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Probability theory




Probability theory uses many different mathematical concepts and techniques.

The purpose of these two lectures is to:

» explain the basic ideas behind p-values and null-hypothesis testing, and their problems;
» explain the basics of Bayesian probability theory.

We aim to understand how these work, not to become proficient with them.



People attending this course find themselves in a period of great change. There are two main ways
to think about and do probability theory: they're usually called "frequentist" and "Bayesian".

Most scientific disciplines have moved or are moving away from the frequentist theory towards
Bayesian theory. Astrophysics was among the first ones and today it only uses Bayesian theory. In
genetics and neuroscience the shift has begun. It's therefore important to get acquainted with the
new way, in order not to be left behind.

The transition happened because Bayesian theory gives demonstrably better results and because
it's a method, based on a couple of principles only. Frequentist theory is a collection of recipes, of
corrections to the recipes, and of dogmas pronounced by "authorities". No method there.

The main problem is that the two ways of doing probability do not differ only in formulae, but in the
very way of thinking about probability. In some scientific problems they lead to the same
conclusions; in some, to different conclusions; and in some, their results aren't comparable because
they phrase and face the problem in completely different ways.



Probability theory

“Frequentist theory”: “Bayesian theory”:
p-values Bayes's theorem
null hypothesis prior
confidence intervals posterior
significance level loss function
likelihood maximum-entropy

recipes method



Probability theory

% “Bayesian theory”:

Bayes's theorem
prior
posterior
loss function
maximum-entropy
method




“Frequentist theory”: ‘“Bayesian theory”:
probability = long-run?! frequency probability = degree of belief

collection of recipes method

e different ways of thinking

e different results!

1 “But this long run is a misleading guide to current affairs.
In the long run we are all dead” (J. M. Keynes 1923)
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) before [ -« Maximum entropy method in image
-' processing

S.F. Gull and J. Skilling

without discernible increase in resolution. This is as it
should be, because the extra information within each
resolution disc, which might have led to increased
resolution, was simply lost in the noise. Maximum entropy
gives an image with minimum structure, so that the
) ) _ balance between increased resolution and noise suppress-
Fig. 1 Photograph subjéct to motion blur of the camera ion is automatic. Fine structural details will appear in the
a Point-spread-function is principally motion blur, with some out-of-focus com- reconstruction if and only if the data demand them.

ponent (UK Home Office photograph) . < - !
b Maximum entropy deconvolution Maximum entropy will also deal with incomplete data.

maximum
entropy

648 IEE PROCEEDINGS, Vol. 131, Pt. F, No. 6, OCTOBER 1984

BAYESIAN SPECTRUM ANALYSIS ON QUADRATURE
NMR DATA WITH NOISE CORRELATIONS (1989)

G. LARRY BRETTHORST

We then show that in typical NMR data the frequencies
and decay rates may be estimated with a precision several orders of magnitude better
than directly from the discrete Fourier transform.



SATURDAY, NOVEMBER 10, 2012

MNate Silver and the new Numerati

By now, we probably all know who Nate Silver is. He correctly forecast the result in 49 out of 50 states and
all 35 US Senate Races in the 2008 election cycle and all 50 states in the 2012 election cycle. How did he
do this? Bayesian Analysis. Ignore all the political pundits_. Nate simply removed the noise from the true
signals. You can check out his 538 blog at the New York Times for more details.

Nate Silver's Map The Actual Map
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Frequentist theory:

p-values & null-hypothesis testing



To understand the idea behind null-hypothesis testing and p-values let's imagine to face the
following investigation:

We're interested in the effects that a particular drug has on cognition in rats. It might lead to an
increase or to a decrease of cognitive abilities, or leave cognition unaffected.

In null-hypothesis testing we usually choose one hypothesis (typically the "no-effect" one) and do
experiments to guess if that hypothesis is false.
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(example adapted from Berger & al 1988)
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(example adapted from Berger & al 1988)
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Null hypothesis Ho



Imagine this scenario: you visit a lab and find out that they're actually testing the drug. They've
devised this experiment:

1. Two homozygote rat twins ard bred and raised in identical conditions.

2. At some point in their development one twin is chosen by the toss of a coin, and the drug injected
into it. A placebo is injected in the other twin.

3. The twins undergo a cognitive task, devised in such a way that there's a "winner" and a "loser".

4. If the drugged twin is the winner, this is considered a "+" result. If it's the loser, this is considered
a "-" result.

5. The procedure above is repeated for several twin pairs.
The idea is this: if the drug affects cognition, we should observe a prevalence of "+" over "-" or vice

versa. If the drug has no effect, their numbers should be roughly equal, since the drugged twin is
chosen by the toss of a coin.

[This imaginary experiment is likely to be poorly designed; feel free to imagine a better design with
two outcomes. The point is to illustrate how p-values work.]



cognitive test:
which twin wins?

Repeat this test on several pairs of twins



You ask the experimenter in the lab what the outcome of the experiment was. They tell you that
they tested 17 pairs of twins, observing 13 "+" and 4 "-".



Outcome: 17 pairs, 13 drug — cognition+, 4 drug — cognition-
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1. List all possible outcomes that could have been obtained
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P-value

1. List all possible outcomes that could have been obtained

2. Calculate the probability of every possible outcome under Ho
3. Read the probability of the actual outcome

4. Sum the probabilities of all outcomes that
have probability = probability of actual outcome

- That’s the p-value

Probability of “possible observations that cast as much or more doubt on
Ho than do the actual data” (Berger & al 1988)






1. List all possible outcomes that could have been obtained



Possible sequences of test results:

17 tests

_______________ » 217 sequences

Possible outcomes:

numberof —: N— 171615141312 °°° 5 4 3



2. Calculate the probability of every possible outcome under Ho



Consider a specific outcome: N_ = 4

* Possible sequences for this outcome:

each one has
probability 21%
under Hy

* How many? Number of distinct ways to shuffle 13 “+" and 4 "

binomial coefficient

= 2380

17\ _ (17\ 17t 17x16x---x2x1
S\4 ) 13r4l T (13x12x---x2%x1)(4x3x2x%x1)

N b V4 1
Outcome A has probability ( 4) X 517 = 0.0182
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3. Read the probability of the actual outcome

under Hy
o

probability
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4. Sum the probabilities of all outcomes that
have probability = probability of actual outcome

- That’s the p-value



Competition! The first four will win...
3. Read the probability of the actual outcome

under Hy
o

probability

© © 3 3 o

4
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4. Sum the probabilities of all outcomes that
have probability = probability of actual outcome

- That’s the p-value
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Now imagine the following development in the scenario:

Some time later you visit another lab. It turns out that also in this lab they've been testing the drug -
and that they used the same exact protocol as the first lab, up to every minute detail (the kind of
rats, the environment, ...even the brand of syringes).

It turns out that the two labs don't know of each other's work (they haven't made their experiments
and results public yet). Imagine that the researchers of the two labs don't even know one another,



...Surprise!
Essentially identical experiment was made in another lab

(same protocols, equivalent equipment & subjects, etc.)




This is a great coincidence, but nevertheless a coincidence. Intrigued by it, you ask lab#2 what their

result was. They tell you that they tested 17 pairs of twins, observing 13 "+" and 4 "-" (it turns out
that even the sequence of results is the same as lab#1's).

| must ask you to imagine that there hasn't been any exchange of information or interaction between
the two labs. This is really just a coincidence.



lab#2: 17 pairs, 13 drug = cognition+, 4 drug — cognition-
1




Question:

Should the same p-value you found for lab #1
also apply to lab #2?

- Please ask me about any details that you judge important for answering this question -

YES NO DUNNO
24 2 3

...but most people changed their mind from YES to NO after the “why 177" question



Your questions:
* Do the two labs know about each other's experiments? (No)

* Are we pooling the results of the two labs? (No)



Question: why was the number 17 chosen? (and not 16 or 18 etc)

 Experimenter lab #1:
“Considering our resources (time, money...), | could test at most 17 pairs.”

 Experimenter lab #2:
“I| wanted to make sure to have enough samples for the less frequent case
(‘+’ or -’), whatever it might be. So | decided to stop only when | had

at least 4 samples for each case.” R
2é i 24 2a
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What about the p-value for Lab #2?



Lab #2

1. List all possible outcomes that could have been obtained



— Each case (‘+" or '~’) must appear at least 4 times
— At most one case may appear 4 times

Impossible sequences:

— 4 — — — + — — — + — -+ — -+ — notenough tests

— — - — — — — = — — too many tests

Possible outcomes:

last test was

Sy

N-—_ 77100 " 14 1312 " 4 4 4 " 4

B 5
o
(W

Ve

last test was —



Lab #2

2. Calculate the probability of every possible outcome under Ho



First: consider a simpler case: stop at first ‘+’

1st test -+ —
y, /\
2nd test + —
y, /\
3rd test -+ —
1y /,\
4th test + —
1}'15 ’,f’ H&. 12+1/4+1/8+1/16 + ... =1
Possible sequences Probability The probability
+ 1/2 for each possible sequence
-t 1/4 is the same
——7 1/8 as without stopping rule
———* 1/16 (even if some sequences

are now excluded)




Consider a specific case: N

N — A
l =

* Impossible sequences:

* Possible sequences:

each one has
probability 21%
under H

* How many? Number of distinct ways to shuffle 13 “+" and 3 "~
binomial coefficient

16\ (16} 16! 16 X15x---x2x1
S \3) 13131 (13x12x---x2x1)(3x2x1)

= 560

16

Outcome 4 has probability ( 3

1



Lab #2
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Lab #2

3. Read the probability of the actual outcome

0.25

nder Hy
o
[\~
o

0.15

0.10

probability u

0.05¢ . .. . P
Ft3dewalkat e
PrigwwYaBcgo
ooooo
88880083820
oooooooo
ooooooo

0.00

a9
I o
ER-E: -
s fJo8ggze®
S
T
45 6 7 8 91011 213 1415 15 17 18 19
44 4 4 4 4% 4 afls 444

4. Sum the probabilities of all outcomes that
have probability = probability of actual outcome

- That’s the p-value



Lab #2

p-value = 0.0212708

9 10 11 12 13 14 15 16 17 18 19 -
4 4 4 4 4 4 4 4 4 4 4

810000
L1E000°0
PPS000°0
2600070 |-
951000 |
6szoo0
tzvooo ||
regoo 0 B
oo B
cL100 -
59z00 [ -

#6900°0 |-
tzvooo |-
sszoo0
951000 |
2600070 |1
PPS000'0

4 4 4 4 4 4 4 4 4
19 18 17 16 15 14 132 12 11 10

LLEDOODD
tal0o0 0

0.25}

— S
AN N N
o o o
U Japun Ajjiqeqoud

6 7 8
4 4 4

5
4

4
4

= L

4

N+



The surprise is that even if the two labs used completely identical protocols and materials, and even
if they got exactly the same outcome (even in the same order), the calculation of p-value leads to
two different results.



Lab #1 Lab #2

outcome: 13 + 4 - outcome: 13 + 4 -

p-value for Ho: 0.049 p-value for Ho: 0.021



Lab #1 Lab #2

outcome: 13 + 4 - outcome: 13 + 4 -

p-value for Ho: 0.049 p-value for Ho: 0.021

Using other stopping rules,
the difference in p-values can be made as large as we please

(Anscombe 1954, Berger & al 1988, Wagenmakers 2006, ...)



NN

This was the 17th pai)
Time to stop. )

LAB #1

TN
~

Now | have 4 of each.
Time to stop.

LAB #2



What happened in the two labs could have been completely identical
except only for the inner thoughts of the two experimenters!



What happened in the two labs could have been completely identical
except only for the inner thoughts of the two experimenters!

Behold the power of your minds




Telekinetic dependence - why?

Because the p-value depends on outcomes that could have occurred - but didn’t
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Probability for sequence that did actually occur = 0.00000763 for both labs



THEORY OF
PROBABILITY

BY
HAROLD JEFFREYS

SECOND EDITION
OXFORD

AT THE CLARENDON PRESS
1948

67.2 What the use of P vmplies, therefore, 18 that a hypo-
thesis that may be true may be rejected because 1t has not predicted observable
results that have not occurred. This seems a remarkable procedure. On
the face of it the fact that such results have not occurred might more
reasonably be taken as evidence for the law, not against it. The same
applies to all the current significance tests based on P integrals.



Another example: a funny story from...

JOURNAL OF THE AMERICAN
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STATISTICAL ASSOCIATION

Number 298 JUNE, 1962 Volume 67

ON THE FOUNDATIONS OF STATISTICAL INFERENCE

A. Birnbaum, L. J. Savage, G. Barnard, J. Cornfield, I. Bross, G. E. P. Box, L. J. Good, D. V. Lindley,
C. W. Clunies-Ross, J. W. Pratt, H. Levene, T. Goldman, A. P. Dempster, O. Kempthorne



JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 298 JUNE, 1962 Volume 67

ON THE FOUNDATIONS OF STATISTICAL INFERENCE

A. Birnbaum, L. J. Savage, G. Barnard, J. Cornfield, . Bross, G. E. P. Box, L. J. Good, D. V. Lindley,
C. W. Clunies-Ross, J. W. Pratt, H. Levene, T. Goldman, A. P. Dempster, O. Kempthorne

An engineer draws a random sample of electron tubes and measures the
plate voltages under certain conditions with a very accurate volt-meter, ac-

curate enough so that measurement error is negligible compared with the vari-

ability of the tubes. A statistician examines the measurements, which look
normally AIQ“'T‘I]‘\““‘AA and vary from 75 ta Q0 van with a mean of 87 and a
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standard deviation of 4. He makes the ordinary normal analysis, giving a confi-
dence interval for the true mean.
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JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 298 JUNE, 1962 Volume 67

ON THE FOUNDATIONS OF STATISTICAL INFERENCE

A. Birnbaum, L. J. Savage, G. Barnard, J. Cornfield, . Bross, G. E. P. Box, L. J. Good, D. V. Lindley,
C. W. Clunies-Ross, J. W. Pratt, H. Levene, T. Goldman, A. P. Dempster, O. Kempthorne

Later he visits the engineer’s laboratory, and

notices that the volt-meter used reads only as far as 100, so the population ap-
pears to be “censored.” This necessitates a new analysis, if the statistician is

orthodox.
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JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 298 JUNE, 1962 Volume 67

ON THE FOUNDATIONS OF STATISTICAL INFERENCE

A. Birnbaum, L. J. Savage, G. Barnard, J. Cornfield, . Bross, G. E. P. Box, L. J. Good, D. V. Lindley,
C. W. Clunies-Ross, J. W. Pratt, H. Levene, T. Goldman, A. P. Dempster, O. Kempthorne

However, the engineer says he has another meter, equally accurate
and reading to 1000 volts, which he would have used if any voltage had been
over 100. This is a relief to the orthodox statistician, because it means the
population was effectively uncensored after all.
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JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 298 JUNE, 1962 Volume 67

ON THE FOUNDATIONS OF STATISTICAL INFERENCE

A. Birnbaum, L. J. Savage, G. Barnard, J. Cornfield, . Bross, G. E. P. Box, L. J. Good, D. V. Lindley,
C. W. Clunies-Ross, J. W. Pratt, H. Levene, T. Goldman, A. P. Dempster, O. Kempthorne

X
> 400

|
N si2-y
araze o |

But the next day the engineer
telephones and says, “I just discovered my high-range volt-meter was not
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1 a8
certains that the engineer would not have held up the experiment until the
meter was fixed, and informs him that a new analysis will be required.
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The en-
gineer is astounded. He says, “But the experiment turned out just the same
as 1f the high-range meter had been working. I obtained the precise voltages
of my sample anyway, so I learned exactly what I would have learned if the
high-range meter had been available. Next you’ll be asking about my oscillo-
scope.”
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The en-
gineer is astounded. He says, “But the experiment turned out just the same
as 1f the high-range meter had been working. I obtained the precise voltages
of my sample anyway, so I learned exactly what I would have learned if the
high-range meter had been available. Next you’ll be asking about my oscillo-
scope.”
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The en-
gineer is astounded. He says, “But the experiment turned out just the same
as if the high-range meter had been working. I obtained the precise voltages
of my sample anyway, so I learned exactly what I would have learned if the
high-range meter had been available. Next you’ll be asking about my oscillo-
scope.”

I agree with the engineer. If the sample has voltages under 100, it doesn’t
matter whether the upper limit of the meter is 100, 1000, or 1 million. The
sample provides the same information in any case.



P-values and other frequentist methods suffer from this dependence on details that our intuition tells
us shouldn't be relevant.

This is not a rare situation, but a concrete occurrence in research. For example, imagine that you've
applied for a grant for this particular experiment, and you should be informed soon on whether you
won the grant.

You decide to test 10 subjects first, and if in the meantime you're notified that you won the grant,
then you'll test 10 more.

If you now exactly apply the four steps to calculate the p-value for your experiment, you realize that
you must consider the probability that you'd win the grant. It's strange that this probability should
play a part in quantifying whether your null-hypothesis is true.

More generally, researchers often don't decide on the number of samples beforehand. This affects
the p-value calculation. Most statistical software implicitly assumes that you decided the number of
samples beforehand - so they're actually calculating the wrong p-value.

See the article by Wagenmakers (2017) for other very realistic examples of this quirky behaviour of
p-values.



For other examples see:

Psychonomic Bulletin & Review
2007, 14 (5), 779-804

THEORETICAL AND REVIEW ARTICLES

A practical solution to the pervasive
problems of p values

ERIC-JAN WAGENMAKERS
University of Amsterdam, Amsterdam, The Netherlands

In the field of psychology, the practice of p value null-hypothesis testing is as widespread as ever. Despite
this popularity, or perhaps because of it, most psychologists are not aware of the statistical peculiarities of the p
value procedure. In particular, p values are based on data that were never observed, and these hypothetical data
are themselves influenced by subjective intentions. Moreover, p values do not quantify statistical evidence. This
article reviews these p value problems and illustrates each problem with concrete examples. The three problems
are familiar to statisticians but may be new to psychologists. A practical solution to these p value problems is to
adopt a model selection perspective and use the Bayesian information criterion (BIC) for statistical inference
(Raftery, 1995). The BIC provides an approximation to a Bayesian hypothesis test, does not require the specifi-
cation of priors, and can be easily calculated from SPSS output.
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STATISTICAL ERRORS

or abrief moment in 2010, Matt Motyl was
on the brink of scientific glory: he had dis-
covered that extremists quite literally see
the world in black and white.

The results were “plain as day”, recalls Motyl,
a psychology PhD student at the University of
Virginia in Charlottesville. Data from a study
of nearly 2,000 people seemed to show that
political moderates saw shades of grey more
accurately than did either left-wing or right-
wing extremists. “The hypothesis was sexy,”
he says, “and the data provided clear support.”
The Pvalue, a common index for the strength
of evidence, was 0.01 — usually interpreted as
‘very significant’ Publication in a high-impact
journal seemed within Motyl’s grasp.

But then reality intervened. Sensitive to con-
troversies over reproducibility, Motyl and his
adviser, Brian Nosek, decided to replicate the
study. With extra data, the P value came out as
0.59 — not even close to the conventional level
of significance, 0.05. The effect had disappeared,
and with it, Motyl's dreams of youthful fame'.

BY REGINA NUZZ0

It turned out that the problem was not in
the data or in Motyl’s analyses. It lay in the sur-
prisingly slippery nature of the P value, which
is neither as reliable nor as objective as most
scientists assume. “P values are not doing their
job, because they can't,” says Stephen Ziliak, an
economist at Roosevelt University in Chicago,
Illinois, and a frequent critic of the way statis-
tics are used.

For many scientists, this is especially worry-
ing in light of the reproducibility concerns. In
2005, epidemiologist John Ioannidis of Stan-
ford University in California suggested that
most published findings are false?; since then,
a string of high-profile replication problems
has forced scientists to rethink how they evalu-
ate results.



THE INSIGNIFICANCE OF STATISTICAL SIGNIFICANCE TESTING

DOUGLAS H. JOHNSON,' U.S. Geological Survey, Biological Resources Division, Northern Prairie Wildlife Research Center,

Jamestown, ND 58401, USA

WHY ARE HYPOTHESIS TESTS USED?

With all the deficiencies of statistical hypoth-
esis tests, it is reasonable to wonder why they
remain so widely used. Nester (1996) suggested
several reasons: (1) they appear to be objective
and exact; (2) they are readily available and eas-
ily invoked in many commercial statistics pack-
ages; (3) everyone else seems to use them; (4)
students, statisticians, and scientists are taught
to use them; and (5) some journal editors and
thesis supervisors demand them.

More cynically, Carver (1978) suggested that
complicated mathematical procedures lend an
air of scientific objectivity to conclusions. Shav-
er (1993) noted that social scientists equate be-
ing quantitative with being scientific. D. V.
Lindley (quoted in Matthews 1997) observed
that “People like conventional hypothesis tests
because its so easy to get signiﬁcant results

from them.”



Other flaws:

 It's possible to reject a true Ho with as low p-level as desired
(Anscombe 1954, Kadane & al 1996, ...)

 One hypothesis only (if it's rejected, what's left?)

e All possible hypotheses can end up being rejected

e Problem when used with rare events
(some scientific disciplines mainly test rare events)

 Problem with small sample size

e Easy to misinterpret & misuse
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Small sample size

Easy to misinterpret & misuse An Applied Statistician’s Creed

By MARKS R. NESTERY}

Queensland Forestry Research Institute, Gympie, Australia

[Received March 1994. Final revision June 1996]

SUMMARY

Hypothesis testing, as performed in the applied sciences, is criticized. Then assumptions that the author
believes should be axiomatic in all statistical analyses are listed. These assumptions render many hypoth-
esis tests superfluous. The author argues that the image of statisticians will not improve until the nexus
between hypothesis testing and statistics is broken.



nature International weekly journal of science

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | F

< &

Over half of psychology studies fail reproducibility
test

Largest replication study to date casts doubt on many published positive results.
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With the increasing use of statistical software, researchers don't consult statisticians any longer. And
they end up miscalculating and misinterpreting p-values. This has lead to unreliable and
contradictory conclusions in the literature.

In my opinion, researchers misuse the p-value also because the p-values is flawed, but they don't
know that it is. Who'd imagine that their calculation might depend on whether they drank coffee in
the morning? it sounds absurd and unscientific.

The statisticians have been very alarmed by the misuse of p-values, and even more by they over-
interpretation as "significance".

For this reason the American Statistical Association published an official declaration in 2016, warning
against p-values.

A year before, a mainstream psychology journal banned the use of p-values and null-hypothesis
testing, because of their flaws.
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EDITORIAL

1. P-values can indicate how incompatible the data are
with a specified statistical model.

2. P-values do not measure the probability that the stud-
ied hypothesis is true, or the probability that the data
were produced by random chance alone.

3. Scientific conclusions and business or policy decisions
should not be based only on whether a p-value passes
a specific threshold.

5. A p-value, or statistical significance, does not measure
the size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.
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Editorial

David Trafimow and Michael Marks
New Mexico State University

The Basic and Applied Social Psychology (BASP) 2014
Editorial emphasized that the null hypothesis signifi-
cance testing procedure (NHSTP) is invalid, and thus
authors would be not required to perform it (Trafimow,
2014). However, to allow authors a grace period, the
Editorial stopped short of actually banning the NHSTP.
The purpose of the present Editorial is to announce that

the grace period is over. From now on, BASP is banning
the NHSTP.



X Summary %

1. P-values can indicate how incompatible the data are
with a specified statistical model.

2. P-values do not measure the probability that the stud-
ied hypothesis is true, or the probability that the data
were produced by random chance alone.

3. Scientific conclusions and business or policy decisions
should not be based only on whether a p-value passes
a specific threshold.

5. A p-value, or statistical significance, does not measure
the size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.

e More reliable methods exist



“Homework”

* If you use statistical software, check whether it asks
about the stopping rule of your experiment.

 Make a list of the stopping rules you’'ve come across
In your research (even vague ones).

e Calculate the p-value of concrete or simplified data.

Imagine a different stopping rule. Re-calculate it and
check how much it differs.



