
P(robability | introduction)
by Luca <piero.mana@ntnu.no>

15 March 2119 (time machine)

• Slides with text will be available in the course folder

• All cited literature is available in the course folder



Probability theory



Probability theory uses many different mathematical concepts and techniques.

The purpose of these two lectures is to:
• explain the basic ideas behind p-values and null-hypothesis testing, and their problems;
• explain the basics of Bayesian probability theory.

We aim to understand how these work, not to become proficient with them.



People attending this course find themselves in a period of great change. There are two main ways 
to think about and do probability theory: they're usually called "frequentist" and "Bayesian".

Most scientific disciplines have moved or are moving away from the frequentist theory towards 
Bayesian theory. Astrophysics was among the first ones and today it only uses Bayesian theory. In 
genetics and neuroscience the shift has begun. It's therefore important to get acquainted with the 
new way, in order not to be left behind.

The transition happened because Bayesian theory gives demonstrably better results and because 
it's a method, based on a couple of principles only. Frequentist theory is a collection of recipes, of 
corrections to the recipes, and of dogmas pronounced by "authorities". No method there.

The main problem is that the two ways of doing probability do not differ only in formulae, but in the 
very way of thinking about probability. In some scientific problems they lead to the same 
conclusions; in some, to different conclusions; and in some, their results aren't comparable because 
they phrase and face the problem in completely different ways.



“Frequentist theory”:

p-values
null hypothesis

confidence intervals
significance level

likelihood
recipes

...

“Bayesian theory”:

Bayes’s theorem
prior

posterior
loss function

maximum-entropy
method

...
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“Frequentist theory”:

probability = long-run¹ frequency

collection of recipes

“Bayesian theory”:

probability = degree of belief

method

• different ways of thinking

• different results!

¹ “But this long run is a misleading guide to current affairs.
In the long run we are all dead”                (J. M. Keynes 1923)
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Frequentist theory:

p-values & null-hypothesis testing



To understand the idea behind null-hypothesis testing and p-values let's imagine to face the 
following investigation:

We're interested in the effects that a particular drug has on cognition in rats. It might lead to an 
increase or to a decrease of cognitive abilities, or leave cognition unaffected.

In null-hypothesis testing we usually choose one hypothesis (typically the "no-effect" one) and do 
experiments to guess if that hypothesis is false.



drug

?
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Null hypothesis H0

?



Imagine this scenario: you visit a lab and find out that they're actually testing the drug. They've 
devised this experiment:

1. Two homozygote rat twins ard bred and raised in identical conditions.

2. At some point in their development one twin is chosen by the toss of a coin, and the drug injected 
into it. A placebo is injected in the other twin.

3. The twins undergo a cognitive task, devised in such a way that there's a "winner" and a "loser".

4. If the drugged twin is the winner, this is considered a "+" result. If it's the loser, this is considered 
a "–" result.

5. The procedure above is repeated for several twin pairs.

The idea is this: if the drug affects cognition, we should observe a prevalence of "+" over "–" or vice 
versa. If the drug has no effect, their numbers should be roughly equal, since the drugged twin is 
chosen by the toss of a coin.

[This imaginary experiment is likely to be poorly designed; feel free to imagine a better design with 
two outcomes. The point is to illustrate how p-values work.]



twins one twin → drug
cognitive test:

which twin wins?

Repeat this test on several pairs of twins



You ask the experimenter in the lab what the outcome of the experiment was. They tell you that 
they tested 17 pairs of twins, observing 13 "+" and 4 "–".



Outcome: 17 pairs, 13 drug → cognition+, 4 drug → cognition–





P-value

1. List all possible outcomes that could have been obtained



P-value

1. List all possible outcomes that could have been obtained

2. Calculate the probability of every possible outcome under H0



P-value

1. List all possible outcomes that could have been obtained

2. Calculate the probability of every possible outcome under H0

3. Read the probability of the actual outcome



P-value

1. List all possible outcomes that could have been obtained

2. Calculate the probability of every possible outcome under H0

3. Read the probability of the actual outcome

4. Sum the probabilities of all outcomes that
     have probability ≤ probability of actual outcome 

                                   → That’s the p-value

Probability of “possible observations that cast as much or more doubt on 
H0 than do the actual data” (Berger & al 1988)
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2. Calculate the probability of every possible outcome under H0







3. Read the probability of the actual outcome

4. Sum the probabilities of all outcomes that
     have probability ≤ probability of actual outcome 
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3. Read the probability of the actual outcome

4. Sum the probabilities of all outcomes that
     have probability ≤ probability of actual outcome 

                                   → That’s the p-value

Competition! The first four will win...





p-value = 0.0490417



Now imagine the following development in the scenario:

Some time later you visit another lab. It turns out that also in this lab they've been testing the drug – 
and that they used the same exact protocol as the first lab, up to every minute detail (the kind of 
rats, the environment, ...even the brand of syringes).

It turns out that the two labs don't know of each other's work (they haven't made their experiments 
and results public yet). Imagine that the researchers of the two labs don't even know one another.



...Surprise!

Essentially identical experiment was made in another lab

(same protocols, equivalent equipment & subjects, etc.)

twins one twin → drug
cognitive test



This is a great coincidence, but nevertheless a coincidence. Intrigued by it, you ask lab#2 what their 
result was. They tell you that they tested 17 pairs of twins, observing 13 "+" and 4 "–" (it turns out 
that even the sequence of results is the same as lab#1's).

I must ask you to imagine that there hasn't been any exchange of information or interaction between 
the two labs. This is really just a coincidence.



lab#2: 17 pairs, 13 drug → cognition+, 4 drug → cognition–



Question:

Should the same p-value you found for lab #1
also apply to lab #2?

– Please ask me about any details that you judge important for answering this question –

YES                                           NO                                      DUNNO
                    24                                             2                                         3

 ...but most people changed their mind from YES to NO after the “why 17?” question



Your questions:

• Do the two labs know about each other's experiments? (No)

• Are we pooling the results of the two labs? (No)



Question: why was the number 17 chosen? (and not 16 or 18 etc)

• Experimenter lab #1:
    “Considering our resources (time, money...), I could test at most 17 pairs.”

• Experimenter lab #2:
    “I wanted to make sure to have enough samples for the less frequent case
    (‘+’ or ‘–’), whatever it might be. So I decided to stop only when I had
    at least 4 samples for each case.”



What about the p-value for Lab #2?



Lab #2

1. List all possible outcomes that could have been obtained





Lab #2

2. Calculate the probability of every possible outcome under H0



1/2 + 1/4 + 1/8 + 1/16 + ... = 1

Possible sequences

+
−+
−−+
−−−+
...

Probability+
1/2+
1/4+
1/8+

1/16+
...+

= 1+

First: consider a simpler case: stop at first ‘+’

The probability
for each possible sequence
is the same
as without stopping rule
(even if some sequences
are now excluded)





Lab #2



Lab #2

3. Read the probability of the actual outcome

4. Sum the probabilities of all outcomes that
     have probability ≤ probability of actual outcome 

                                   → That’s the p-value



p-value = 0.0212708

Lab #2



The surprise is that even if the two labs used completely identical protocols and materials, and even 
if they got exactly the same outcome (even in the same order), the calculation of p-value leads to 
two different results.



Lab #1

outcome: 13 +    4 –

p-value for H0: 0.049

Lab #2

outcome: 13 +    4 –

p-value for H0: 0.021



Lab #1

outcome: 13 +    4 –

p-value for H0: 0.049

Lab #2

outcome: 13 +    4 –

p-value for H0: 0.021

Using other stopping rules,
the difference in p-values can be made as large as we please

(Anscombe 1954, Berger & al 1988, Wagenmakers 2006, ...)



This was the 17th pair.
Time to stop.

Now I have 4 of each.
Time to stop.

LAB #1

LAB #2



What happened in the two labs could have been completely identical
except only for the inner thoughts of the two experimenters!



What happened in the two labs could have been completely identical
except only for the inner thoughts of the two experimenters!

p = 0.021p = 0.049

p = 0.087

p = 0.002
p = 0.016

p = 1

p = 0.055
p = 0.000001

Behold the power of your minds



Telekinetic dependence – why?

Because the p-value depends on outcomes that could have occurred – but didn’t

Probability for sequence that did actually occur = 0.00000763 for both labs



(§ 7.2)
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Another example: a funny story from...
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P-values and other frequentist methods suffer from this dependence on details that our intuition tells 
us shouldn't be relevant.

This is not a rare situation, but a concrete occurrence in research. For example, imagine that you've 
applied for a grant for this particular experiment, and you should be informed soon on whether you 
won the grant.

You decide to test 10 subjects first, and if in the meantime you're notified that you won the grant, 
then you'll test 10 more.

If you now exactly apply the four steps to calculate the p-value for your experiment, you realize that 
you must consider the probability that you'd win the grant. It's strange that this probability should 
play a part in quantifying whether your null-hypothesis is true.

More generally, researchers often don't decide on the number of samples beforehand. This affects 
the p-value calculation. Most statistical software implicitly assumes that you decided the number of 
samples beforehand – so they're actually calculating the wrong p-value.

See the article by Wagenmakers (2017) for other very realistic examples of this quirky behaviour of 
p-values.



For other examples see:







Other flaws:

• It’s possible to reject a true H0 with as low p-level as desired

• One hypothesis only (if it’s rejected, what’s left?)

• All possible hypotheses can end up being rejected

• Problem when used with rare events
   (some scientific disciplines mainly test rare events)

• Problem with small sample size

• Easy to misinterpret & misuse

(Anscombe 1954, Kadane & al 1996, ...)
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With the increasing use of statistical software, researchers don't consult statisticians any longer. And 
they end up miscalculating and misinterpreting p-values. This has lead to unreliable and 
contradictory conclusions in the literature.

In my opinion, researchers misuse the p-value also because the p-values is flawed, but they don't 
know that it is. Who'd imagine that their calculation might depend on whether they drank coffee in 
the morning? it sounds absurd and unscientific.

The statisticians have been very alarmed by the misuse of p-values, and even more by they over-
interpretation as "significance".

For this reason the American Statistical Association published an official declaration in 2016, warning 
against p-values.

A year before, a mainstream psychology journal banned the use of p-values and null-hypothesis 
testing, because of their flaws.



American Statistical Association





• More reliable methods exist

※ Summary ※



“Homework”

• If you use statistical software, check whether it asks
   about the stopping rule of your experiment.

• Make a list of the stopping rules you’ve come across
   in your research (even vague ones).

• Calculate the p-value of concrete or simplified data.
   Imagine a different stopping rule. Re-calculate it and
   check how much it differs.


