Bayesian probability theory

\qquad
\qquad

\square
\square
\square

$$
2
$$

路
\square
\square
\square
\qquad

$$
>
$$

\qquad

H

Is it true or false?
statement
conjectures
hypotheses

Probability of a statement given another statement

'Probability of statement H given statement C'

\downarrow

The three basic rules of the probability calculus

$$
\mathrm{P}(\text { not }-Q \mid S)=1-\mathrm{P}(Q \mid S)
$$

$$
\mathrm{P}(Q \& R \mid S)=\mathrm{P}(Q \mid R \& S) \cdot \mathrm{P}(R \mid S)
$$

$$
\mathrm{P}(Q \text { or } R \mid S)=\mathrm{P}(Q \mid S)+\mathrm{P}(R \mid S)-\mathrm{P}(Q \& R \mid S)
$$

All probability calculations and results, however complicated they might look,
are just the application of the three rules above, over and over and over again

$$
\mathrm{P}(\text { not }-Q \mid S)=1-\mathrm{P}(Q \mid S)
$$

$$
\mathrm{P}(Q \& R \mid S)=\mathrm{P}(Q \mid R \& S) \cdot \mathrm{P}(R \mid S)
$$

$$
\mathrm{P}(Q \text { or } R \mid S)=\mathrm{P}(Q \mid S)+\mathrm{P}(R \mid S)-\mathrm{P}(Q \& R \mid S)
$$

Rules of Inference:
Elementary Valid Argument Forms

Bayes's theorem

$$
\begin{aligned}
& \text { (sum over all possible hypotheses) }
\end{aligned}
$$

Bayes's theorem

$\mathrm{P}\left(H_{\# 1} \mid D \& A\right)=\frac{\mathrm{P}\left(D \mid H_{\# 1} \& A\right) \cdot \mathrm{P}\left(H_{\# 1} \mid A\right)}{\mathrm{P}\left(D \mid H_{* 1} \& A\right) \cdot \mathrm{P}\left(H_{* 1} \mid A\right)+\mathrm{P}\left(D \mid H_{* 2} \& A\right) \cdot \mathrm{P}\left(H_{\# 2} \mid A\right)+\ldots}$
 (sum over all possible hypotheses)

$\mathrm{P}($ hypothesis \mid data \& assumptions $) \propto$

$$
\mathrm{P}(\text { data } \mid \text { hypothesis \& assumptions }) \times \mathrm{P}(\text { hypothesis } \mid \text { assumptions })
$$

Probability of some hypotheses, given data

$$
\mathrm{P}(H \mid D \& A) \propto \mathrm{P}(D \mid H \& A) \cdot \mathrm{P}(H \mid A)
$$

Typical elements of Bayesian analysis
Probability of some hypotheses, given data

$$
\mathrm{P}(H \mid D \& A) \propto \mathrm{P}(D \mid H \& A) \cdot \mathrm{P}(H \mid A)
$$

- Formulate precise hypotheses
- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

Bayesian probability theory forces us to state clearly and precisely:

- What are our conjectures/hypotheses?
-What are our facts?
- What are our assumptions?

The rats \& drug investigation: approach via Bayesian probability theory

- Formulate precise hypotheses
- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

Probability of each hypothesis, given the data

$$
\mathrm{P}(H \mid D \& A) \propto \mathrm{P}(D \mid H \& A) \cdot \mathrm{P}(H \mid A)
$$

Formulate precise hypotheses - What is the purpose of this study?

- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

What are our hypotheses? What are our question \& purpose?

Does the drug enhance cognitive abilities?

\rightarrow Yes, No, Sometimes, It depends, ...

What are our hypotheses? What are our question \& purpose?

Does the drug enhance cognitive abilities?

Ultimate question, but too complex
(we'll return to it later)

What are our hypotheses? What are our question \& purpose?

Is there a systematic effect?
\rightarrow Yes, No?

What are our hypotheses? What are our question \& purpose?

What are our hypotheses? What are our question \& purpose?

How many of the tested rats show increased cognitive abilities?
$\rightarrow 0,1,2, \ldots, 17$

What are our hypotheses? What are our question \& purpose?

How many of the tested rats show increased cognitive abilities?
$\rightarrow 0,1,2, \ldots, 17$

Better! But no probabilities here:
after the experiment, we know the exact answer with 100% certainty.
Are we interested in these specific 17 rat twins only?

Would the drug lead to a positive result, if tested on a new twin pair?
\rightarrow Yes, No

What are our hypotheses? What are our question \& purpose?

Would the drug lead to a positive result, if tested on a new twin pair?
\rightarrow Yes, No

```
Good!
We are concretely asking if our study extrapolates. This question can be answered also in practice.
```

What are our hypotheses? What are our question \& purpose?

In a much larger number of tests, how many positive results? $\rightarrow n=0,1,2$, ..., full population N

What are our hypotheses? What are our question \& purpose?

In a much larger number of tests, how many a positive results? $\rightarrow n=0,1,2$, ..., full population N

```
Also good!
Although practically impossible to answer experimentally,
this question has clear and unequivocal answers.
It quantifies 'how systematic' the effect is.
NB: We need to specify what's the "full population"
```

The probabilities for the two good questions are often connected:

$$
\mathrm{P}(\text { New } \mid \text { data })=\sum n / N \mathrm{P}(n \mid \text { data })
$$

What are our hypotheses? What are our question \& purpose?

In a much larger number of tests, how many a positive results? $\rightarrow n=0,1,2$, ..., full population N

```
Also good!
Although practically impossible to answer experimentally,
this question has clear and unequivocal answers.
It quantifies 'how systematic' the effect is
NB: We need to specify what's the "full population"
```

The probabilities for the two good questions are often connected:

$$
\mathrm{P}(\text { New } \mid \text { data })=\sum n / N \mathrm{P}(n \mid \text { data })
$$

Let's compare 1000000001 concrete hypotheses:

Let's compare 1000000001 concrete hypotheses:

Let's compare 1000000001 concrete hypotheses:
$H_{0}=$ 'In 1 billion tests, no test yields cognitive+ (all cognitive-)'

Let's compare 1000000001 concrete hypotheses:
$H_{0}=$ 'In 1 billion tests, no test yields cognitive+ (all cognitive-)'

$H_{0}=$ 'In 1 billion tests, no test yields cognitive + (all cognitive-)'
$H_{0.000000001}=$ 'In 1 billion tests, 1 test yields cognitive+'
$H_{0.000000002}=$ 'In 1 billion tests, 2 tests yield cognitive+'

$H_{0}=$ 'In 1 billion tests, no test yields cognitive + (all cognitive-)'
$H_{0.000000001}=$ 'In 1 billion tests, 1 test yields cognitive+'
$H_{0.000000002}=$ 'In 1 billion tests, 2 tests yield cognitive+'
$H_{0.25}=$ 'In 1 billion tests, 250000000 yield cognitive+'
$H_{0.5}=$ 'In 1 billion tests, 500000000 yield cognitive+'
$H_{1}=$ 'In 1 billion tests, all tests yield cognitive+'

$H_{0}=$ 'In 1 billion tests, no test yields cognitive+ (all cognitive-)'
$H_{0.000000001}=$ 'In 1 billion tests, 1 test yields cognitive+'
$H_{1}=$ 'In 1 billion tests, all tests yield cognitive+'

$H_{f}=$ 'In 1000000000 tests, a fraction f yield cognitive+'
$f=0,1 / 1000000000,2 / 1000000000, \ldots, 999999999 / 1000000000,1$ (all

- Formulate precise hypotheses
- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

17 twins tested: 13 drug \rightarrow cognitive,$+ \quad 4$ drug \rightarrow cognitive-

- Lab\#1's stopping rule: test 17

- Lab\#2's stopping rule: test until at least four "+" and "-"
- Formulate precise hypotheses
- Assess which data we have or need

Examine which assumptions we need to make

- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

What do we need to assume?

Assumptions are necessary for two purposes:

- to assess the probability of the data, given each hypothesis
- to assess the pre-data probability of each hypothesis

What do we need to assume?

- to assess the probability of the data, given each hypothesis

$$
\mathrm{P}(\text { 'In } 17 \text { tests, } 13 \text { cognitive+' | 'In } 1 \text { billion tests, } 100 \text { cognitive+' \& } A \text {) }
$$

What do we need to assume?

- to assess the probability of the data, given each hypothesis

$$
P(\text { 'In } 17 \text { tests, } 13 \text { cognitive+' | 'In } 1 \text { billion tests, } 100 \text { cognitive+' \& } A \text {) }
$$

Assumptions:

What do we need to assume?

- to assess the probability of the data, given each hypothesis

```
P('In 17 tests, 13 cognitive+' | 'In 1 billion tests, 100 cognitive+' & A)
```

Assumptions:

- The tested rats are part of the larger set of 1 billion tests
- The tested rats are not specially chosen from the larger population

What do we need to assume?

- to assess the probability of the data, given each hypothesis

```
P('In 17 tests, 13 cognitive+' | 'In 1 billion tests, 100 cognitive+' & A)
```


Assumptions:

- The tested rats are part of the larger set of 1 billion tests
- The tested rats are not specially chosen from the larger population
\rightarrow If some tested rats were unsystematically exchanged with some in the remaining population, our results would still be valid

We say that the tested rats are exchangeable with the full population

What do we need to assume?

- to assess the probability of the data, given each hypothesis

$$
\mathrm{P}(\text { 'In } 17 \text { tests, } 13 \text { cognitive+' | 'In } 1 \text { billion tests, } 100 \text { cognitive+' \& } A \text {) }
$$

Assumptions:

- The tested rats are part of the larger set of 1 billion tests
- The tested rats are not specially chosen from the larger population
\rightarrow If some tested rats were unsystematically exchanged with some in the remaining population, our results would still be valid

The Annals of Statistics
1981, Vol. 9, No. 1, 45-58

THE ROLE OF EXCHANGEABILITY IN INFERENCE ${ }^{1}$

By D. V. Lindley and Melvin R. Novick
University College London and The University of Iowa
This paper is concerned with basic problems of statistical inference. The thesis is in three parts: (1) that inference is a procedure whereby one passes from a population (or sample) to a new individual; (2) that this connection can be established using de Finetti's idea of exchangeability or Fisher's concept of a subpopulation; (3) in making the connection use must be made of the appropriate probability. These three principles are used in a variety of situations and the topics discussed include analysis of variance and covariance, contingency tables, and calibration. Some comments on randomization are also included.

- Formulate precise hypotheses
- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

Probability of data given hypotheses: Lab\#1

$$
\mathrm{P}\left(13+4-\mid H_{0.7} \& A\right)=\binom{17}{4} \times 0.7^{13} \times(1-0.7)^{4}=0.1868
$$

(This is an approximation to 8 significant digits: the correct distribution is a hypergeometric one)

Probability of data given hypotheses: Lab\#2

$$
\mathrm{P}\left(13+4-\mid H_{0.7} \& A\right)=\binom{16}{3} \times 0.7^{13} \times(1-0.7)^{4}=0.04395
$$

because of the stopping rule
we couldn't shuffle the last -

Probability of sequence given hypotheses (same for both labs)

$$
\mathrm{P}\left(++++-+++-++++-++-\mid H_{0.7} \& A\right)=0.7^{13} \times(1-0.7)^{4}=0.00007848
$$

(Considering the sequences as outcomes would lead to a p-value $=1$)

- Formulate precise hypotheses
- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis

Pre-data probabilities of hypotheses

Let's consider three possible assumptions as examples:
$A=$: 'Dunno', all frequencies equally plausible

Pre-data probabilities of hypotheses

Let's consider three possible assumptions as examples:
$A_{=}$: 'Dunno', all frequencies equally plausible
$A_{\text {no }}$: 'Suspect no effect', frequencies $f \sim 0.5$ slightly more plausible (equal number of + and -)

Pre-data probabilities of hypotheses

Let's consider three possible assumptions as examples:
$A=$: 'Dunno', all frequencies equally plausible
$A_{\text {no }}$: 'Suspect no effect', frequencies ~ 0.5 slightly more plausible (equal number of + and -)
$A_{\text {yes }}$: 'Suspect effect', frequencies $f \sim 0.25,0.75$ slightly more plausible (fewer + than - or vice versa)

- Formulate precise hypotheses
- Assess which data we have or need
- Examine which assumptions we need to make
- Assess the probability of the data given each hypothesis
- Assess the pre-data probability of each hypothesis
- Probability of each hypothesis, given the data

$$
\mathrm{P}(H \mid D \& A) \propto \mathrm{P}(D \mid H \& A) \cdot \mathrm{P}(H \mid A)
$$

$\mathrm{P}\left(H_{f} \mid D \& A\right)=\frac{\mathrm{P}\left(D \mid H_{f} \& A\right) \cdot \mathrm{P}\left(H_{f} \mid A\right)}{\mathrm{P}\left(D \mid H_{\circ} \& A\right) \cdot \mathrm{P}\left(H_{0} \mid A\right)+\ldots+\mathrm{P}\left(D \mid H_{1} \& A\right) \cdot \mathrm{P}\left(H_{1} \mid A\right)}$
 (1000 000001 terms)

$\mathrm{P}\left(H_{f} \mid D \& A\right)=\frac{\mathrm{P}\left(D \mid H_{f} \& A\right) \cdot \mathrm{P}\left(H_{f} \mid A\right)}{\mathrm{P}\left(D \mid H_{0} \& A\right) \cdot \mathrm{P}\left(H_{0} \mid A A+\ldots+\mathrm{P}\left(D \mid H_{1} \& A\right) \cdot \mathrm{P}\left(H_{1} \mid A\right)\right.}$

Bayes's formula:

- is not listing outcomes that could have happened (but didn't)
- is listing alternative hypotheses

Probability of hypotheses given data: Lab\#1

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=$

$$
\mathrm{P}\left(D \mid H_{f} \& A\right) \cdot \mathrm{P}\left(H_{f} \mid A\right)
$$

$\mathrm{P}\left(D \mid H_{0} \& A\right) \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+\mathrm{P}\left(D \mid H_{0.5} \& A\right) \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+\mathrm{P}\left(D \mid H_{1} \& A\right) \mathrm{P}\left(H_{1} \mid A\right)$

Probability of hypotheses given data: Lab\#1

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=$

$$
\frac{\binom{17}{4} \cdot f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{\binom{17}{4} \cdot 0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+\binom{17}{4} \cdot 0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+\binom{17}{4} \cdot 1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}
$$

Probability of hypotheses given data: Lab\#1

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=$
$\frac{(17) \cdot f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right) \cdot 0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+(17) \cdot 0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+(17 / 4) \cdot 1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}{(4)}$

Probability of hypotheses given data: Lab\#1

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=$

$$
\begin{gathered}
\frac{(17) /(17) \cdot f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{13 \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+(17 / 4) \cdot 1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)} \\
=\frac{f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}
\end{gathered}
$$

Probability of hypotheses given data: Lab\#2

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#2 \& $\left.A\right)=$
$\frac{\binom{16}{3} \cdot f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{\binom{16}{3} \cdot 0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+\binom{16}{3} \cdot 0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+\binom{16}{3} \cdot 1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}$
we couldn't shuffle the last -
because of the stopping rule

Probability of hypotheses given data: Lab\#2

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#2 \& $\left.A\right)=$

Probability of hypotheses given data: Lab\#2

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#2 \& $\left.A\right)=$

	$\binom{16}{7} \cdot f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)$	
$\binom{16}{3} \cdot 0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots$	$(16) \cdot 0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+$	$(16) / 3) \cdot 1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)$

$$
=\frac{f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}
$$

Probability of hypotheses given data sequence

$\mathrm{P}\left(H_{f} \mid\right.$ data sequence \& $\left.A\right)=$

$$
\frac{f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}
$$

$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=\mathrm{P}\left(H_{f} \mid\right.$ data lab\#2 \& $\left.A\right)=$
$\mathrm{P}\left(H_{f} \mid\right.$ data sequence $\left.\& A\right)=$

$$
\frac{f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}
$$

stopping rules don't affect the final probability!
$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=\mathrm{P}\left(H_{f} \mid\right.$ data lab\#2 \& $\left.A\right)=$
$\mathrm{P}\left(H_{f} \mid\right.$ data sequence $\left.\& A\right)=$

$$
\frac{f^{13} \cdot(1-f)^{4} \cdot \mathrm{P}\left(H_{f} \mid A\right)}{0^{13} \cdot 1^{4} \cdot \mathrm{P}\left(H_{0} \mid A\right)+\cdots+0.5^{13} \cdot 0.5^{4} \cdot \mathrm{P}\left(H_{0.5} \mid A\right)+\cdots+1^{13} \cdot 0^{4} \cdot \mathrm{P}\left(H_{1} \mid A\right)}
$$

Now let's substitute the pre-data probabilities
$\mathrm{P}\left(H_{f} \mid\right.$ data lab\#1 \& $\left.A\right)=\mathrm{P}\left(H_{f} \mid\right.$ data lab\#2 \& $\left.A\right)=$ $\mathrm{P}\left(H_{f} \mid\right.$ data sequence $\left.\& A\right)=$

 What is the probability that the drug leads to＂cognitive＋＂
in more than half of the larger population？ What is the probability that the drug leads to＂cogn
in more than half of the larger population？

（
（
（
（ T
\qquad
\qquad
（
la ll
la ll
（
（
la ll
（

冨
（
la ll
\square
（
\square

都

教

T
\square

\square

\qquad

\qquad
\qquad
\qquad
\qquad

（

\qquad
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square \qquad
\qquad
（
\qquad
（
（
1
（
（
冨
1

and

\qquad
\qquad
\qquad
（
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pr Per
 \square \square

the larger population?

Abstract

Abstract

\qquad
\qquad
\qquad
\qquad

en
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

\square
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is the probability that the drug leads to "cognitive+" in more than half of the larger population?

'dunno':

$$
\mathrm{P}\left(f>1 / 2 \mid D \& A_{=}\right)=98.5 \%
$$

'suspect no effect':

$$
\mathrm{P}\left(f>1 / 2 \mid D \& A_{\mathrm{no}}\right)=97.6 \%
$$

'suspect effect':

$$
\mathrm{P}\left(f>1 / 2 \mid D \& A_{\text {yes }}\right)=98.9 \%
$$

All three scientists agree that almost surely there is some effect
They are more uncertain about how strong the effect is (as measured by f)
\qquad
\qquad

\square
\square
\square

$$
2
$$

路
\square
\square
\square
\qquad

$$
>
$$

\qquad

$$
\begin{array}{r}
\text { frequen } \\
\\
\\
\\
\hline \text { A } \\
\\
\\
\\
\\
\hline
\end{array}
$$

 \longrightarrow


```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
``` （ \(\qquad\) 2

\(\qquad\)
（
（
\(\qquad\)

 \begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
11 \\
3 \\
0 \\
0 \\
0 \\
3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}

\(\square\)

\begin{abstract}

\end{abstract}

According to a two－tailed test，the data are signiticant p＝0．049）at the 0．05 ever．
According to a two－tailed test，the data are signiticant \(p=0.049)\) at the \(0.051 e v e 1\).

 ccording to a two－taned test，the data are signiticant \((p=0.04\)
－
\(\Gamma\)

教
\(\qquad\)
\(\qquad\)
\(\qquad\)
\({ }^{66}\) According to a two-tailed test, the data are significant \((p=0.049)\) at the 0.05 level.
(alright, but what does this mumbo-jumbo concretely mean?)

\section*{66 rent paper \\ requentist paper}
(alright, but what does this mumbo-jumbo concretely mean?)
Accordin
-
\(\qquad\)
\(\square\)

\(\square\)
O
(
C

-

\footnotetext{

}

g to
g
 g to a two-tailed test, the data are significant \((p=0.049)\) at the 0.05 level.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
路
\[
0
\]
\(\qquad\)
\(\square\)
\(\square\)
\(\square\)
"Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predict:
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug.
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 .
"Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predictassumptions behind the conclusions are plainly stated
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug.
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 .
"Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predict:
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug. The results are concrete predictions (no vague "significant" bullshit)
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 .
"Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predict:
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug. This says that we're almost certain that there is some positive effect
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 .
" Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predict:
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug.
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 . This reports our predictions about the population percentage of the effect

"Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predict:
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug.
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 .
"Given the data, the assumption that our sample is exchangeable in a much larger population, and an initial assumption of uniform ignorance about the future frequency of positive test results, we predict:
- With \(98 \%\) credibility, more than \(1 / 2\) of future tests will respond positively to the drug.
- With \(90 \%\) credibility, the average of future positive responses lies between 0.56 and 0.88 .

The paper could also add the results from different assumptions:
A strongly sceptical pre-data probability leads to:
- 92\%: more than 1/2 of future tests will be positive
- 90\%: average will be between 0.48 and 0.74

\section*{First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole}

\section*{The Event Horizon Telescope Collaboration \\ (See the end matter for the full list of authors.)}

Received 2019 March 1; revised 2019 March 12; accepted 2019 March 12; published 2019 April 10
We used two distinct Bayesian-inference algorithms and demonstrate that such crescent models are statistically preferred over other comparably complex geometric models that we have explored.

Our quantitative modeling approach seeks to estimate the
 posterior distribution \(P(\boldsymbol{\Theta} \mid \boldsymbol{D})\) of some parameters \(\boldsymbol{\Theta}\) within the context of a model and conditioned on some data \(\boldsymbol{D}\),
\[
\begin{equation*}
P(\boldsymbol{\Theta} \mid \boldsymbol{D})=\frac{P(\boldsymbol{D} \mid \boldsymbol{\Theta}) P(\boldsymbol{\Theta})}{P(\boldsymbol{D})} \equiv \frac{\mathcal{L}(\boldsymbol{\Theta}) \pi(\boldsymbol{\Theta})}{\mathcal{Z}} \tag{7}
\end{equation*}
\]

Here, \(\mathcal{L}(\Theta) \equiv P(\boldsymbol{D} \mid \boldsymbol{\Theta})\) is the likelihood of the data given the model parameters, \(\pi(\Theta) \equiv P(\Theta)\) is the prior probability of the model parameters, and
\[
\begin{equation*}
\mathcal{Z} \equiv P(\boldsymbol{D})=\int \mathcal{L}(\boldsymbol{\Theta}) \pi(\boldsymbol{\Theta}) d \boldsymbol{\Theta} \tag{8}
\end{equation*}
\]
is the Bayesian evidence.

How many samples, if we want a pre-established credibility?

\(\qquad\)
\(\qquad\)

\(\square\)
\(\square\)
\(\square\)
\[
2
\]

路
\(\square\)
\(\square\)
\(\square\)
\(\qquad\)
\[
>
\]
\(\qquad\)

\section*{Example Matlab script to calculate the post-data distributions}
```

%% Data:
positive = 13;
negative = 4;

```
\%\% Parameters for pre-data distribution (mean and standard deviation):
mean \(=0.5\);
\(\mathrm{sd}=0.2\);
betaShape1 \(=((1-m e a n) *\) mean/sd^2 - 1) \(*\) mean; \% shape-parameters of beta distribution
betaShape2 \(=\) betaShape1 * (1 - mean)/mean;
\%\% Pre-data distribution (represented by a beta distribution, https://mathworld.wolfram.com/BetaDistribution.html):
predata \(=\) @(f) betapdf(f, betaShape1, betaShape2);
\%\% Final distribution, numerator and denominator of Bayes's formula:
numerator = @(f) nchoosek(positive+negative, positive) .* f.^positive .* (1-f).^negative .* predata(f);
denominator \(=\) integral(numerator, 0, 1); \% integral approximates sum
\%\% Plot the two distributions:
fgrid \(=0:(1 / 1000): 1\); \% create a grid of f-coordinates
plot(fgrid, numerator(fgrid)/denominator);
hold on
plot(fgrid, predata(fgrid), '--');
hold off
grid on
set(gca, 'XAxisLocation', 'origin');
set(gca, 'YAxisLocation', 'origin');
xlabel('f');
ylabel('probability');
legend('given data', 'initial assumption', 'Location', 'northwest')
\%\% Print probability for \(f\) > 0.5, given the data:
disp('probability for f > 0.5:');
disp(integral(numerator, 0.5, 1)/denominator);
\% gives 0.9758658

library('ggplot2')

\section*{\#\# Data:}
positive <- 13
negative <- 4
\#\# Parameters for pre-data distribution (mean and standard deviation):
mean <- 0.5
sd <- 0.2
betaShape1 <- ((1 - mean) * mean/sd^2 - 1) * mean \# shape-parameters of beta distribution betaShape2 <- betaShape1 * (1 - mean)/mean
\#\# Pre-data distribution (represented by a beta distribution, https://mathworld.wolfram.com/BetaDistribution.html): predata <- function(f) dbeta(f, betaShape1, betaShape2)
\#\# Final distribution, numerator and denominator of Bayes's formula:
numerator <- function(f) choose(positive+negative, negative) * f^positive * (1-f)^negative * predata(f) denominator <- integrate(numerator, 0, 1)\$value \# integral approximates sum
\#\# Plot the two distributions:
fgrid <- seq(0, 1, length.out=1000) \# create a grid of f-coordinates toPlot <- rbind(data.table(f=fgrid,
probability=predata(fgrid),
given='initial assumption'),
data.table(f=fgrid, given='data'))
qplot(x=f, y=probability, data=toPlot, geom='line',
color=given, lty=given, lwd=I(1.5)) + theme(legend.pos='top')
\#\# Print probability for \(\mathrm{f}>0.5\), given the data:
print('probability for \(f\) > 0.5:')
print(integrate(numerator, 0.5, 1)\$value/denominator)
\# gives 0.9758658
Example \(R\) script to calculate the post-data distributions and to output the final probability that \(f>0.5\)
\[
\text { J- }+\frac{1}{2}
\]

\section*{What are our hypotheses? What are our question \& purpose?}

Does the drug enhance cognitive abilities?
\(\rightarrow\) Yes, No, Sometimes, It depends, ...

\section*{Does the drug enhance cognitive abilities?}
\(\rightarrow\) Yes, No, Sometimes, It depends, ...

P ('In 17 tests, 13 cognitive + | 'The drug enhances cognitive abilities' \& A)

\section*{Does the drug enhance cognitive abilities?}
\(\rightarrow\) Yes, No, Sometimes, It depends, ...

What do we need to assume?

P ('In 17 tests, 13 cognitive + | 'The drug enhances cognitive abilities' \& A)

How systematic is the effect on rats in general?

Thank you!```

