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Bayesian theory

assess probabilities of hypotheses

Decision theory

make decisions
(based on probabilities and costs)

↓
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The three basic rules of the probability calculus

P(not-Q | S)  =  1 – P(Q | S)

P(Q & R | S)  =  P(Q | R & S) ⋅ P(R | S)

P(Q or R | S)  =  P(Q | S) + P(R | S) – P(Q & R | S)

All probability calculations and results, however complicated they might look,

are just the application of the three rules above, over and over and over again



The three basic rules of the probability calculus
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Bayes's theorem

P(H#1 | D & A)  =
P(D | H#1 & A) ⋅ P(H#1 | A)

P(D | H#1 & A) ⋅ P(H#1 | A)  +  P(D | H#2 & A) ⋅ P(H#2 | A)  +  ...

(sum over all possible hypotheses)



Bayes's theorem

P(H#1 | D & A)  =
P(D | H#1 & A) ⋅ P(H#1 | A)

P(D | H#1 & A) ⋅ P(H#1 | A)  +  P(D | H#2 & A) ⋅ P(H#2 | A)  +  ...

(sum over all possible hypotheses)

P(hypothesis | data & assumptions)  ∝  

P(data | hypothesis & assumptions) × P(hypothesis | assumptions)



Probability of some hypotheses, given data

P(H | D & A)  ∝  P(D | H & A) ⋅ P(H | A)



 Typical elements of Bayesian analysis

Probability of some hypotheses, given data

• Formulate precise hypotheses

• Assess which data we have or need

• Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis

P(H | D & A)  ∝  P(D | H & A) ⋅ P(H | A)



Bayesian probability theory forces us

to state clearly and precisely:

• What are our conjectures/hypotheses?

• What are our facts?

• What are our assumptions?



The rats & drug investigation:

approach via Bayesian probability theory



cognitive +

cognitive –

cognitive =

drug

?

twins one twin ← drug
cognitive test:

which twin wins?



• Formulate precise hypotheses

• Assess which data we have or need

• Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis

Probability of each hypothesis, given the data

P(H | D & A)  ∝  P(D | H & A) ⋅ P(H | A)



▶Formulate precise hypotheses

• Assess which data we have or need

• Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis

 

– What is our question?

– What is the purpose of this study?



What are our hypotheses?  What are our question & purpose?

Does the drug enhance cognitive abilities? 

→  Yes,  No,  Sometimes, It depends, ...



What are our hypotheses?  What are our question & purpose?

Does the drug enhance cognitive abilities? 

→  Yes,  No,  Sometimes, It depends, ...

Ultimate question, but too complex

(we’ll return to it later)



What are our hypotheses?  What are our question & purpose?

Is there a systematic effect? 

→  Yes,  No?



What are our hypotheses?  What are our question & purpose?

Is there a systematic effect? 

→  Yes,  No?

Less complex, but too vague

What do we mean by ‘systematic’?

If ‘systematic’ = ‘every time’ then the answer is No.

We want a question that is

  • less categorical

  • quantifiable 



What are our hypotheses?  What are our question & purpose?

How many of the tested rats show increased cognitive abilities? 

→  0, 1, 2, ..., 17



What are our hypotheses?  What are our question & purpose?

How many of the tested rats show increased cognitive abilities? 

→  0, 1, 2, ..., 17

Better! But no probabilities here:

after the experiment, we know the exact answer with 100% certainty.

Are we interested in these specific 17 rat twins only?



What are our hypotheses?  What are our question & purpose?

Would the drug lead to a positive result, if tested on a new twin pair?

→  Yes,  No



What are our hypotheses?  What are our question & purpose?

Would the drug lead to a positive result, if tested on a new twin pair?

→  Yes,  No

Good!

We are concretely asking if our study extrapolates.

This question can be answered also in practice.

✓



What are our hypotheses?  What are our question & purpose?

In a much larger number of tests, how many positive results?

→  n = 0, 1, 2, ..., full population N



What are our hypotheses?  What are our question & purpose?

In a much larger number of tests, how many a positive results?

→  n = 0, 1, 2, ..., full population N

Also good!

Although practically impossible to answer experimentally,

this question has clear and unequivocal answers.

It quantifies ‘how systematic’ the effect is.

NB: We need to specify what’s the “full population”

✓

The probabilities for the two good questions are often connected:

P(New | data)  =  ∑ n/N P(n | data)
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✓
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Let’s compare 1 000 000 001 concrete hypotheses:

H0 = ‘In 1 billion tests, no test yields cognitive+ (all cognitive–)’

H0.000 000 001 = ‘In 1 billion tests, 1 test yields cognitive+’

H0.000 000 002 = ‘In 1 billion tests, 2 tests yield cognitive+’

...

H0.25 = ‘In 1 billion tests, 250 000 000 yield cognitive+’

...



Let’s compare 1 000 000 001 concrete hypotheses:

H0 = ‘In 1 billion tests, no test yields cognitive+ (all cognitive–)’

H0.000 000 001 = ‘In 1 billion tests, 1 test yields cognitive+’

H0.000 000 002 = ‘In 1 billion tests, 2 tests yield cognitive+’

...

H0.25 = ‘In 1 billion tests, 250 000 000 yield cognitive+’

...

H0.5 = ‘In 1 billion tests, 500 000 000 yield cognitive+’

...

H1 = ‘In 1 billion tests, all tests yield cognitive+’



Let’s compare 1 000 000 001 concrete hypotheses:

H0 = ‘In 1 billion tests, no test yields cognitive+ (all cognitive–)’

H0.000 000 001 = ‘In 1 billion tests, 1 test yields cognitive+’

...

H1 = ‘In 1 billion tests, all tests yield cognitive+’

        ↓
Hf = ‘In 1 000 000 000 tests, a fraction f yield cognitive+’

                                                                                                             

  f  =  0,  1/1 000 000 000,  2/1 000 000 000,  ...,  999 999 999/1 000 000 000,  1 

               (all 

−)                                                                                                                                                               (all +)



• Formulate precise hypotheses

▶ Assess which data we have or need

• Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis



Which data do we have?

17 twins tested:   13 drug → cognitive+,    4 drug → cognitive–

• Lab#1's stopping rule:  test 17

• Lab#2's stopping rule:  test until at least four "+" and "–"



• Formulate precise hypotheses

• Assess which data we have or need

▶ Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis



What do we need to assume?

Assumptions are necessary for two purposes:

• to assess the probability of the data, given each hypothesis

P(‘In 17 tests, 13 cognitive+’ | ‘In 1 billion tests, 100 cognitive+’ & A)
• to assess the pre-data probability of each hypothesis

P(‘In 1 billion tests, 100 tests yield cognitive+’ | A)



What do we need to assume?

• to assess the probability of the data, given each hypothesis

P(‘In 17 tests, 13 cognitive+’ | ‘In 1 billion tests, 100 cognitive+’ & A)
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Assumptions:
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• to assess the probability of the data, given each hypothesis

P(‘In 17 tests, 13 cognitive+’ | ‘In 1 billion tests, 100 cognitive+’ & A)

Assumptions:

    • The tested rats are part of the larger set of 1 billion tests

    • The tested rats are not specially chosen from the larger population



What do we need to assume?

• to assess the probability of the data, given each hypothesis

P(‘In 17 tests, 13 cognitive+’ | ‘In 1 billion tests, 100 cognitive+’ & A)

Assumptions:

    • The tested rats are part of the larger set of 1 billion tests

    • The tested rats are not specially chosen from the larger population

       → If some tested rats were unsystematically exchanged with

           some in the remaining population, our results would still be valid 

We say that the tested rats are exchangeable with the full population



What do we need to assume?

• to assess the probability of the data, given each hypothesis

P(‘In 17 tests, 13 cognitive+’ | ‘In 1 billion tests, 100 cognitive+’ & A)

Assumptions:

    • The tested rats are part of the larger set of 1 billion tests

    • The tested rats are not specially chosen from the larger population

       → If some tested rats were unsystematically exchanged with

           some in the remaining population, our results would still be valid 



• Formulate precise hypotheses

• Assess which data we have or need

• Examine which assumptions we need to make

▶ Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis



(This is an approximation to 8 significant digits:

 the correct distribution is a hypergeometric one)

Probability of data given hypotheses: Lab#1



because of the stopping rule

we couldn’t shuffle the last −

Probability of data given hypotheses: Lab#2



(Considering the sequences as outcomes would lead to a p-value = 1)

Probability of sequence given hypotheses
(same for both labs)



• Formulate precise hypotheses

• Assess which data we have or need

• Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

▶ Assess the pre-data probability of each hypothesis



Let's consider three possible assumptions as examples:

A= : ‘Dunno’, all frequencies equally plausible

Pre-data probabilities of hypotheses

‘dunno’

y-axis multiplied by 100 000 000 (probability density)



Let's consider three possible assumptions as examples:

A= : ‘Dunno’, all frequencies equally plausible

Ano : ‘Suspect no effect’, frequencies f ~ 0.5 slightly more plausible

         (equal number of + and −)

Pre-data probabilities of hypotheses

‘suspect no effect’



Let's consider three possible assumptions as examples:

A= : ‘Dunno’, all frequencies equally plausible

Ano : ‘Suspect no effect’, frequencies ~0.5 slightly more plausible

         (equal number of + and −)

Ayes : ‘Suspect effect’, frequencies f ~ 0.25, 0.75 slightly more plausible

          (fewer + than − or vice versa)

Pre-data probabilities of hypotheses

‘suspect effect’



• Formulate precise hypotheses

• Assess which data we have or need

• Examine which assumptions we need to make

• Assess the probability of the data given each hypothesis

• Assess the pre-data probability of each hypothesis

▶ Probability of each hypothesis, given the data

P(H | D & A)  ∝  P(D | H & A) ⋅ P(H | A)



P(Hf | D & A)  =
P(D | Hf & A) ⋅ P(Hf | A)

P(D | H0 & A) ⋅ P(H0 | A)  +  ...  +  P(D | H1 & A) ⋅ P(H1 | A)

(1 000 000 001 terms)

P(hypothesis | data & assumptions)  ∝  P(data | hypothesis & assumptions) ⋅ P(hypothesis | assumptions)  



P(Hf | D & A)  =
P(D | Hf & A) ⋅ P(Hf | A)

P(D | H0 & A) ⋅ P(H0 | A)  +  ...  +  P(D | H1 & A) ⋅ P(H1 | A)

(1 000 000 001 terms)

P(hypothesis | data & assumptions)  ∝  P(data | hypothesis & assumptions) ⋅ P(hypothesis | assumptions)  

Bayes’s formula:

• is not listing outcomes that could have happened (but didn’t)

• is listing alternative hypotheses



Probability of hypotheses given data: Lab#1

P(D | Hf & A)

P(D | H0 & A)                                    P(D | H0.5 & A)                                      P(D | H1 & A)



Probability of hypotheses given data: Lab#1



Probability of hypotheses given data: Lab#1



Probability of hypotheses given data: Lab#1



Probability of hypotheses given data: Lab#2

we couldn’t shuffle the last −

because of the stopping rule



Probability of hypotheses given data: Lab#2



Probability of hypotheses given data: Lab#2



Probability of hypotheses given data sequence



stopping rules don’t affect the final probability!



Now let’s substitute the pre-data probabilities





NB: same graphs for both labs!

P(Hf | D & A)



P(Hf | A) P(Hf | D & A)→



What is the probability that the drug leads to "cognitive+"

in more than half of the larger population?



What is the probability that the drug leads to "cognitive+"

in more than half of the larger population?

P(f  > ½ | D & A)

0.5



What is the probability that the drug leads to "cognitive+"

in more than half of the larger population?

‘dunno’:

    P(f  > ½ | D & A=)  =  98.5%

‘suspect no effect’:

    P(f  > ½ | D & Ano)  =  97.6%

‘suspect effect’:

    P(f  > ½ | D & Ayes)  =  98.9%

All three scientists agree that almost surely there is some effect

They are more uncertain about how strong the effect is (as measured by f )





“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

frequentist paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

(alright, but what does this mumbo-jumbo concretely mean?)

frequentist paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency of 

positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 0.88.

frequentist paper

Bayesian paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency 

of positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 0.88.

Assumptions behind the conclusions are plainly stated

frequentist paper

Bayesian paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency of 

positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 

0.88.

The results are concrete predictions  (no vague “significant” bullshit)

frequentist paper

Bayesian paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency of 

positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 0.88.

This says that we’re almost certain that there is some positive effect

frequentist paper

Bayesian paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency of 

positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 0.88.
This reports our predictions about the population percentage of the effect

frequentist paper

Bayesian paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency of 

positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 0.88.

frequentist paper

Bayesian paper



“According to a two-tailed test, the data are significant (p = 0.049) at the 0.05 level.

“Given the data, the assumption that our sample is exchangeable in a much larger 

population, and an initial assumption of uniform ignorance about the future frequency of 

positive test results, we predict:

• With 98% credibility, more than 1/2 of future tests will respond positively to the drug.

• With 90% credibility, the average of future positive responses lies between 0.56 and 0.88.

The paper could also add the results from different assumptions:

A strongly sceptical pre-data probability leads to:

• 92%: more than 1/2 of future tests will be positive

• 90%: average will be between 0.48 and 0.74

frequentist paper

Bayesian paper





How many samples, if we want a pre-established credibility?



How many samples, if we want a pre-established credibility?

P(Hf | D & A)





Example Matlab script to calculate the post-data distributions

and to output the final probability that f > 0.5

clear

%% Data:
positive = 13;
negative = 4;

%% Parameters for pre-data distribution (mean and standard deviation):
mean = 0.5;
sd = 0.2;

betaShape1 = ((1 - mean) * mean/sd^2 - 1) * mean; % shape-parameters of beta distribution
betaShape2 = betaShape1 * (1 - mean)/mean;

%% Pre-data distribution (represented by a beta distribution, https://mathworld.wolfram.com/BetaDistribution.html):
predata = @(f) betapdf(f, betaShape1, betaShape2);

%% Final distribution, numerator and denominator of Bayes's formula:
numerator = @(f) nchoosek(positive+negative, positive) .* f.^positive .* (1-f).^negative .* predata(f);
denominator = integral(numerator, 0, 1); % integral approximates sum

%% Plot the two distributions:
fgrid = 0:(1/1000):1; % create a grid of f-coordinates
plot(fgrid, numerator(fgrid)/denominator);
hold on
plot(fgrid, predata(fgrid), '--');
hold off
grid on

set(gca, 'XAxisLocation', 'origin');
set(gca, 'YAxisLocation', 'origin');

xlabel('f');
ylabel('probability');

legend('given data', 'initial assumption', 'Location', 'northwest')

%% Print probability for f > 0.5, given the data:
disp('probability for f > 0.5:');
disp(integral(numerator, 0.5, 1)/denominator);
% gives 0.9758658



Example R script to calculate the post-data distributions

and to output the final probability that f > 0.5

library('ggplot2')

## Data:
positive <- 13
negative <- 4

## Parameters for pre-data distribution (mean and standard deviation):
mean <- 0.5
sd <- 0.2

betaShape1 <- ((1 - mean) * mean/sd^2 - 1) * mean # shape-parameters of beta distribution
betaShape2 <- betaShape1 * (1 - mean)/mean

## Pre-data distribution (represented by a beta distribution, https://mathworld.wolfram.com/BetaDistribution.html):
predata <- function(f) dbeta(f, betaShape1, betaShape2)

## Final distribution, numerator and denominator of Bayes's formula:
numerator <- function(f) choose(positive+negative, negative) * f^positive * (1-f)^negative * predata(f)
denominator <- integrate(numerator, 0, 1)$value # integral approximates sum

## Plot the two distributions:
fgrid <- seq(0, 1, length.out=1000) # create a grid of f-coordinates
toPlot <- rbind(data.table(f=fgrid,
                           probability=predata(fgrid),
                           given='initial assumption'),
                data.table(f=fgrid,
                           probability=numerator(fgrid)/denominator,
                           given='data'))

qplot(x=f, y=probability, data=toPlot, geom='line',
      color=given, lty=given, lwd=I(1.5)) + theme(legend.pos='top')

## Print probability for f > 0.5, given the data:
print('probability for f > 0.5:')
print(integrate(numerator, 0.5, 1)$value/denominator)
# gives 0.9758658



What are our hypotheses?  What are our question & purpose?

Does the drug enhance cognitive abilities? 

→  Yes,  No,  Sometimes, It depends, ...
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P(‘In 17 tests, 13 cognitive+’ | ‘The drug enhances cognitive abilities’ & A)



What are our hypotheses?  What are our question & purpose?

Does the drug enhance cognitive abilities? 

→  Yes,  No,  Sometimes, It depends, ...

What do we need to assume?

P(‘In 17 tests, 13 cognitive+’ | ‘The drug enhances cognitive abilities’ & A)



Does the drug enhance cognition?

Data

biological/neurological hypotheses

mechanisms

...



Does the drug enhance cognition?

Data

biological/neurological hypotheses

mechanisms

...

How systematic is the effect on rats in general?



Thank you!


