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Abstract

The discipline usually called ‘probability theory’ can be seen as the theory which
describes and sets standard norms to the way we reason about plausibility. From this
point of view, this ‘plausibility theory’ is a province of logic, and the following in-
formal proportion subsists:

plausibility theory
common notion of ‘plausibility’

=
deductive logic

common notion of ‘truth’
.

Some studies in plausibility theory are here offered. An alternative view and math-
ematical formalism for the problem of induction (the prediction of uncertain events
from similar, certain ones) is presented. It is also shown how from plausibility theory
one can derive a mathematical framework, based on convex geometry, for the descrip-
tion of the predictive properties of physical theories. Within this framework, problems
like state assignment — for any physical theory — find simple and clear algorithms,
numerical examples of which are given for three-level quantum systems. Plausibility
theory also gives insights on various fashionable theorems, like Bell’s theorem, and
various fashionable ‘paradoxes’, like Gibbs’ paradox.
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I. Prologue

Aber wie wollte ich gerecht sein von
Grund aus! Wie kann ich Jedem das
Seine geben! Diess sei mir genug: ich
gebe Jedem das Meine.

Zarathustra [558]

Truesdell, Jaynes, and Hardy

In the present notes I present part of the studies pursued to achieve the title of ‘philoso-
phiae doctor’. Well, I have not really pursued them for the sake of the title (which like all
titles is seldom a guarantee of anything, especially today), but rather spurred by curiosity
about certain questions stemming for a passion (which, like all passions, is not a guarantee
of success and quality) for physics, mathematics, logic, and philosophy — in a word, a
passion for natural philosophy.

My final undergraduate studies concerned general relativity, and the first thought was
to continue my graduate studies in that beautiful field. But I still had a strong curiosity
and antipathy towards quantum mechanics, which originated from the related undergradu-
ate studies. So my graduate studies took a quantum-mechanical turn. The subject was,
and still is, absolutely counterintuitive. Teachers say that it is the physical phenomena de-
scribed that are counterintuitive. I believe that it is the model we have build of them that is
counterintuitive, not the phenomena themselves; or I could wickedly say: it is the absence
of physics in the model that is counterintuitive.1 As I say later in these pages, quantum
mechanics looks like a Linnaean ‘catalogue’ and systematisation of interesting phenom-
ena; but its phenomenological system lacks physics as Linné’s system lacked genetics, so
to speak.

A very important turn in my studies was the finding and reading of Jaynes’ Probability
Theory: The Logic of Science [392]. I can still recall the wonder and enlightenment I
felt reading the first chapters of that book. Probability theory had up to that point been
for me just a difficult and obscure subject. Suddenly it was shown by Jaynes to be just a

1To this, one should also add the unscientific attitude of many physicists who indulge in speaking about
‘unsolvable mysteries’ or the like; such physicists would have made very good priests.
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2 I. PROLOGUE

province of logic, with few, simple, and clear principles, from which all the rest can be
derived and on which all applications are based. It turned out that this point of view was
quite old, at least as old as Leibniz’ studies, and that it had been and still is cultivated not
only by physicists but also by logicians like Hailperin [312, 313]. From this new point of
view, and reading other studies by Jaynes and by others (e.g. Caves, Fuchs, Schack) having
similar views, quantum mechanics began to appear somewhat less incomprehensible. More
precisely, some of its mathematical objects and structure acquired new meanings, quite
different from those I had been taught. But their origin, the physical idea behind them, was
and still is missing.

Another turn, rapidly following the Jaynesian one, was the reading of Hardy’s Quantum
theory from five reasonable axioms [316]. Hardy presented a mathematical structure com-
pletely isomorphic to that of quantum mechanics, but without imaginary numbers. I had
not thought that something like that could ever be possible; but it is (and, a posteriori, one
sees that this possibility is a quite trivial fact). More than that, Hardy started from a math-
ematical framework that is as much simple as it is general, and can be applied to classical
as well as quantum mechanics, and provides a lot of insight into the mathematical struc-
tures of these theories. My curiosity was drawn at first principally toward that framework.
It appears to have been around at least from the fifties.

The third turn, no less important than the other two, was the reading and studying of
Truesdell’s work and studies in rational continuum thermomechanics. Also in this case
I felt enlightenment and enthusiasm. Truesdell and the other workers in rational ther-
momechanics — Coleman, Ericksen, Noll, Owen, Serrin to name just a few — present
thermodynamics in the same way as rational mechanics, or analytical point mechanics, or
continuum mechanics are usually presented. Not only that: they present continuum mech-
anics (including electromagnetism) and thermodynamics as one whole beautiful subject.
They dispelled many of the preconceptions I had learnt to parrot in thermodynamics: that
temperature and entropy are ‘defined’ only in equilibrium and for ‘quasi-static’ processes,
that the entropy function determines the equation of state, et similia. But Truesdell’s writ-
ings — which are often literary gems and like Jaynes’ are colourful, provocative, personal,
unlike the many dull, dry writings that follow some recommended ‘scientific style’ in or-
der to achieve a semblance of objectivity — have given and give me much more than
only thermodynamic insights. They are a guide and reference in scientific thinking; in
understanding what physics and physical theories are; and in quality standards — which,
unfortunately, I seldom meet albeit I strive to achieve them.

What about quantum theory, after these studies? On the one side, I am no longer
interested in it. ‘Classical’ physics is more beautiful; it is ‘classical’ also in the literary
sense. On another side, I am still interested in quantum mechanics in the sense in which
they say ‘know your enemy’. Its understanding can eventually lead to its resolution into
‘classical’ physics, a possibility for which I see no physical or conceptual obstacles. I
discuss this in more detail at various places in these notes.



3

Purpose and contents of these notes

The public-made articles reprinted with these notes, a list of which is given on page xiii,
are a part of the fruits of the studies inspired by the work of Jaynes, Truesdell, and Hardy.
They concern plausibility theory and the general features of the plausibilistic properties
of physical theories. They are minuscule notes and bricks that I hope may be used in the
music and edifice of natural philosophy: to replace older and partly eroded bricks, to mod-
ulate between two or more arie. It is ennobling to contribute, however modestly, to the
same sublime music and great edifice to which the geniuses of Aristotle, Euclid, Newton,
Leibniz, Euler, Laplace, Gauss, Cauchy, Hamilton, Maxwell, Boole, Gibbs, Poincaré, Hil-
bert, Einstein, Wittgenstein, Tarski, Truesdell and many others contributed foundations,
themes, vaults, counterpoints, buttresses, stretti, pillars, rhythms.

The chapters that follow are only meant as concrete or ligatures amongst the reprinted
articles, to show their unity and fill some gaps. Thus, these notes are not meant to be a short
introduction to plausibility theory, or plausibility logic, or statistical models, or classical
or quantum mechanics, or other subjects touched in the discourse. Rather, knowledge of
these subjects is to a great deal presupposed in order to read the articles presented. These
notes may rather be, for some readers, an invitation to read and study the cited works on
these subjects, so that these readers can build by themselves a context against which to read
and understand the articles; for other readers, a reminder of those works and subjects. As
invitation or as a reminder, they are accompanied by personal remarks on some of those
works and on the subjects themselves. The presentation is not linear, since the subjects
presented interconnect and touch one another in a variety of points and ways. This is also
the reason for which I have chosen to divide the text in continuously numbered sections.

‘What do you mean by “plausibility theory”?’ some will ask. Plausibility theory is
that province of logic which describes and formalises the way we reason, or we think we
ought to reason, about plausibility. In precisely the same sense, well-known deductive lo-
gic describes and formalises the way we reason about truth. There are many mathematical
similarities between plausibility theory and the various probability theories that stroll and
limp around. But its strength lies in its meaning and its interpretation; and on this account
it is intimately related to Bayesian probability theory. Chapter II, containing a short in-
troduction and summary of plausibility logic, with references and brief historical remarks,
provides some context against which to read Papers (F) and (G), which represent my small
contributions to the problem of induction within plausibility theory. In this chapter I also
give some additional remarks and addenda to those papers.

‘And what do you mean by “plausibilistic properties of physical theories”?’ others
will ask. I mean those quantitative properties of the predictions, expressed as plausibility
distributions, that a physical theory allows us to make, and above all the certainties or
plausibilities of these predictions, independently from what these predictions are physically
about. There is a mathematical framework which is particularly suited to this study. I call it
the ‘vector’ or ‘convex’ framework since it is based on linear algebra and convex geometry
plays an important part in it. It is intimately related to the theory of statistical models.
Chapter III is a sort of introduction to this framework from a very general perspective
and with some historical remarks, and thus provides some context against which to read
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Papers (C) and (D). A panoramic of some advantages and insights provided by the vector
framework is also given. Papers (B) and (E) are examples of such insights.

Plausibility theory as discussed in chapter II is at the heart of the vector framework
discussed in chapter III. Indeed, chapter IV shows that the problem of state assignment, as
formulated in the vector framework, is just a case of a problem of induction in plausibility
theory. This presents the ideas and the general formulae on which Papers (H) and (I) are
based. Additional remarks are also given.

The remaining part of my studies’ fruits, especially those on thermodynamics, statist-
ical mechanics, and continuum mechanics, is not presented here (if not en passant in Pa-
pers (B) and (E)) although it constitutes a good 50% of the total, because it consists more
in personal insights than in original contributions, and also because of spatio-temporal lim-
itations. In chapter V, however, I sketchily present some ideas of mine for future studies,
and it will be clear that many of these concern thermodynamics, statistical mechanics, and
continuum mechanics.

Since I think that the study of past literature, which often hides extremely beautiful
gems, is essential to research and gives many insights, I have tried to provide as many
bibliographic references as possible.

The notation follows ISO [362] and ANSI/IEEE [358] standards.

Other remarks

Of course, under my post-graduate studies I have also formed some opinions and got a
clearer personal view on research in general. These opinions and view surely emerge
in the remarks presented on the following pages. As well as opinions I have also had
some ‘revelations’, unfortunately mostly negative, like e.g. the fact that the ‘peer-reviewed’
literature of our times counts too many unworthy and erroneous papers. I do not mean
papers which present theories that at a deeper analysis prove to be inconsistent, or that
yield wrong predictions; for these are part of the crab march of science. I mean papers
whose authors clearly do not know the subject they are working with, or do not have a
minimum of logic, or the mathematics is completely erroneous at an elementary level.
And I am not saying that such papers are the majority, but their number is for my own taste
too high. The problem is not really with such papers themselves and with their content, for
‘quadratures of the circle’, equations like ‘2 + 2 = 5’, et similia have always been, and will
always be, presented. The problem is that those papers were supposedly ‘peer-reviewed’.
This simply means that ‘peer-reviewed’ publication is not a guarantee for quality. Perhaps
it gives a guarantee for plausible quality; but from my personal experience as reader this
plausibility does not reach, not for all but yet for many famous journals, a level which I
can personally accept.

A far greater problem with many famous ‘peer-reviewed’ journals is that they have
often been and still are a vehicle for ostracism from the current ‘establishment’. New
or provocative but mathematically and logically irreproachable ideas meet resistance in
the publication phase; but the naturally understandable resistance should be met in the
reading phase, not in the publication one. So we are in the perverse situation in which
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ridiculous papers are ‘peer review’-accepted and published simply because they parrot
what the Celebrity of the Moment (often only a scientific pygmy) has said, and beautiful
papers are ‘peer review’-rejected simply because they say something provocative though
ingenious. Jaynes’ papers are an example of the latter kind; he had to publish mostly
in conference proceedings. Another ‘problem’ are the constraints that ‘peer-reviewed’
journals impose on the style of a paper. These constraints are completely understandable,
since each journal is characterised by its style, has its aficionados, and must find formal
devices to maintain an appearance of objectivity. And yet, my personal opinion is that with
regard to style there are no authorities other than those one self chooses, and the Chicago
Manual of Style, e.g., may well be a bible for someone and au pair with toilet paper for
someone else. I am not willing to adapt the style of a paper to that of a particular journal
only to be published therein.

Fortunately today, thanks to the internet, all the problems above are no problems any-
more. Any scholar can post his or her studies, written in a completely personal style, in
scientific archives which are freely and publicly available — an essential requisite of sci-
entific studies —, like arXiv.org (http://arxiv.org) and mp_arc (http://www.ma.
utexas.edu/mp_arc/), and the ‘peer reviewers’ are the final readers, who may praise the
paper or throw it away, and hopefully send criticisms and comments to the author in both
cases. No ostracism can be excised in between: the responsibility of judging the paper lies
entirely on the readers, not on ignote third parties — and I think this is a very important
point in science. Much time is also gained in avoiding discussions with ‘referees’ who
sometimes are even incompetent as regards the paper’s subject or have no reasons to cri-
ticise a paper other than that it shows weaknesses in some work of their own or of their
friends and allies.2 In order to have opinions and criticisms about some study of mine I
prefer to ask some colleague who I know to be competent and frank. It is for this reason
that, as of 2007, I have for the moment decided not to submit any papers to ‘peer-reviewed’
journals any longer. I post them mainly to arXiv.org, and whoever wants to judge them
must do so by reading them, not by looking where they are published.

Another negative revelation has been the knowledge-tight separation between different
physical disciplines. Too many quantum physicists, e.g., have no idea of the new results
achieved in thermodynamics since the sixties (many will still tell you that temperature is
defined only at equilibrium3 and that equations of state can be derived from the entropy
function); and many quantum experimentalists are unaware of the theorists’ profound in-
sights, some of which are seventy years old, into the mathematical structure of quantum
mechanics. This separation can even become puerile hostility in the relationship between
physics and mathematics, or physics and philosophy. Quite disappointing is the philosoph-
ical naïveté of so many physicists, even of some otherwise very competent; grotesquely, it
is usually accompanied by scorn for the philosophers’ activities.4

2I think that a useful thing would be if ‘peer-reviewed’ journals periodically published a list of rejected
papers along with the names of the referees who rejected them and the grounds for rejection.

3They could as well say that ‘position’ is defined only at rest.
4I have read somewhere that Wheeler said ‘Philosophy is too important to leave to the philosophers’. I hope

he was joking. Surely I should not leave philosophy to people talking about ‘it from bit’, ‘complementarity’, or
other cheap and puerile ideas.

http://arxiv.org
http://www.ma.utexas.edu/mp_arc/
http://www.ma.utexas.edu/mp_arc/
http://arxiv.org




II. Plausibility logic and induction

A Bayesian statistical test

1. Suppose that a person called Ingo is in a certain room at a certain time and, because
of various reasons that need not interest us now and that we denote by I, Ingo strongly
believes or is almost sure that a person called Ambrose will come into the room within the
next minute, a hypothetical fact that we denote by the proposition A.

Someone asks Ingo what is the probability of A, and he says

P(A| I) = 0.001. (II.1)

A minute passes, and Ambrose has not come in, therefore Ingo and we agree that A is
false.

Now call eq. (II.1) a ‘model’, consider all the facts that I have told you, and answer the
following test question: Do you think that eq. (II.1) is a good or a bad model?

If you answer:

‘Yes’ — then plausibility theory, and Bayesian probability theory in particular, is not for
you.

‘No’ — then plausibility theory and Bayesian probability theory are probably for you.

Or perhaps you have a third answer — the most appropriate one: ‘Wait a moment: first
you must tell me what eq. (II.1) is a model for!’. The point in fact is that those who answer
‘Yes’ evidently conceive P(A| I) as a ‘model’ of how things are, in this case those denoted
by A. Those who answer ‘No’ instead conceive P(A| I) as a ‘model’ of how the beliefs
about A of the person who knows I are.

In plausibility theory, P(A| I) quantifies a belief, not the ‘reality of a fact’ or ‘how often
a facts has happened’ or ‘the tendency of a fact to happen’ or something similar. And
an equation like (II.1) is a ‘model’ for a belief about A, given the knowledge I. Hence
eq. (II.1) is, in this particular case, a really bad model, since it does not reflect nor quantify
well at all what Ingo believed about A when he knew I (remember that he was almost sure
that Ambrose would come). It does not matter, for the purposes of judging the model, if A
is then observed or not, if Ambrose came or not.

7
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Deductive logic

2. Physicists have generally a great respect for logic and formal logic1 and try never
to break its rules, even if this sometimes happens anyway. If for instance a physicist, in a
given context I, first asserts the proposition A — and this can be symbolically written as
I |= A or T(A| I) = 1 — and then the proposition B, T(B| I) = 1, and later asserts that A
and B are together false, T(A ∧ B| I) = 0, then this is sure to bring forth a lot of papers
and comments attacking his work and perhaps even him personally as well. Because we
all know that

if you state I |= A,

and you state I |= B,

then you must state I |= A ∧ B

(II.2)

Because thus is the way we reason about facts and hypotheses and their truth, and
we are not willing to accept conclusions by a person who does not follow this way of
reasoning. In this sense formal logic is normative: in it we have distilled, formalised,
and in some cases simplified the way any rational person should reason about facts and
hypotheses.

An important characteristic of formal logic is that it is not directly concerned with the
subject of the reasoning it formalises. If I state that all fairies are under ten centimetres
tall, then assert that Uranium is a radioactive element, and finally assert that it is not true
that all fairies are under ten centimetres tall and that Uranium is a radioactive element,
you would certainly object to my conclusion. Not on the grounds that fairies do not exist,
but on the grounds that I violate the conjunction rule above. In fact, I may even reason
about statements that are empirically false, but if I respect the rules of logic my reasoning
is completely self-consistent. In this case you can argue against the truth of my conclusions
not because of my reasoning, but because the premises I used were empirically false.

We see then that in logic we have some ‘initial’ propositions (the premises or axioms
or hypotheses) and some ‘final’ propositions (the conclusions), constructed by means of
various logical connectives like ‘and’ (∧), ‘or’ (∨), ‘not’ (¬), and others. Logic is only
concerned about the relationships between the truth or falsity of the former with that of the
latter; but it is not concerned on whether the former or the latter are actually true or false.

3. The form in which formal logic is constructed stems from the fact that the common
notion of ‘truth’ can be taken to be, in many situations at least, dichotomic. This means that
the truth or falsity of a proposition A can be represented by one of two values — ‘t’ and ‘f’,
‘>’ and ‘⊥’, ‘0’ and ‘1’, or whatever — associated to that proposition. So we could write
something like T(A) = 1 in order to express that A is true. In this notation, however, some

1Many are the books and textbooks in logic. A list including same classics can count Mill [529], De Mor-
gan [160], Johnson [400–402], Lewis and Langford [465], Tarski [687], Quine [609, 610], Strawson [673, 674]
Copi and Cohen [135, 136] Suppes [680], Hamilton [315], Barwise and Etchemendy [51, 52] (see also [48–50]),
van Dalen [149]. See also Adams [1, 2] and Hailperin [313], who present the connexions between formal logic
and probability theory.
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T(A| I) T(B| I) T(¬A| I) T(A ∧ B| I) T(A ∨ B| I)
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

Table II.1: Truth tables for negation, conjunction, and disjunction.

important details are left implicit. Perhaps the proposition A is empirically true, or perhaps
we are entertaining its truth only hypothetically or conditionally on other hypotheses or
on a model. In other words, the truth of a proposition is always best referred to a context.
Denoting such a context by I, we can then write ‘T(A| I) = 1’, as in fact we did in § 2.
This expression can be read ‘the truth-value of A, given (or: in the context) I, is “true” ’.
In formal logic this is sometimes written ‘I |= A’. Note that, here and in the following,
the discussion is restricted to propositional calculi; first- and higher-order calculi are not
considered. Therefore, thanks to the completeness theorem of the propositional calculus,
we need not care about the distinction between ‘I |= A’ and ‘I ` A’ (for this distinction see
the refs in footnote 1).

The relationships between the truth-values of the premises and those of the conclusions
are usually given by truth tables like those of Table II.1. They can also be compactly
written as the following set of equations:

T(¬A| I) = 1 − T(A| I), (II.3a)
T(A ∧ B| I) = T(A| I) × T(B| I), (II.3b)
T(A ∨ B| I) = T(A| I) + T(B| I) − T(A| I) × T(B| I). (II.3c)

Note that these equations rely on the interpretation of the symbols ‘0’ and ‘1’ as mathem-
atical symbols and on their mathematical properties (the tables II.1, on the other hand, do
not rely on this interpretation).

4. The relations between the truth-values of premises and conclusions expressed in
table II.1 and eqs. (II.3) are quite standard. But we can present the reasonings that they
express in a slightly different way, and modify the formal relations accordingly. Take
relation (II.3b) for instance. Its form apparently indicates that the assertions of the truth
or falsity of A and B are made independently; i.e., when we state B for example, we do
not need to know what has been asserted about A, and vice versa. Indeed, the expression
‘T(B| I)’ e.g. bears no trace of the proposition A. This way of reasoning can be weakened.
We can assert the truth of A and then, given this assertion, assert the truth or falsity of B as
well. We can express this conditional truth-value2 by the formula ‘T(B| A∧ I)’. It expresses
the fact that the truth-value of B is referred not only to the context I, but to the truth of A as
well. In the same way can we introduce the formula ‘T(A| B ∧ I)’. From this point of view

2Not to be confused with the ‘material conditional’, for which see again the refs in footnote 1.
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we have that if we assert A, and then, given A, we assert B, then we must necessarily also
assert their conjunction A ∧ B. The truth table for the conjunction can then be modified in
the two following equivalent ways:

T(A| I) T(B| A ∧ I) T(A ∧ B| I)
0 nd 0
0 nd 0
1 0 0
1 1 1

T(B| I) T(A| B ∧ I) T(A ∧ B| I)
0 nd 0
0 nd 0
1 0 0
1 1 1

where ‘nd’ stands for ‘non-defined’: it does not make sense to assign, e.g., a truth-value to
B given A, if A is not given. In terms of ‘conditional’ truth-values, the rules (II.3) can be
rewritten as follows:

T(¬A| I) = 1 − T(A| I), (II.4a)

T(A ∧ B| I) = T(A| I) × T(B| A ∧ I)
= T(B| I) × T(A| B ∧ I),

(II.4b)

T(A ∨ B| I) = T(A| I) + T(B| I) − T(A| I) × T(B| A ∧ I)
= T(A| I) + T(B| I) − T(B| I) × T(A| B ∧ I).

(II.4c)

5. I must now hurry to make clear that what I have called ‘conditional truth-value’ is
not a part of the logic usually taught in undergraduate courses; although Adams [1, 2] and
Hailperin [313] introduce calculi which include this conditional truth-value. Something
similar to it is also present in the formalisms of natural deduction or sequent calculus,
for which see e.g. [46, 51, 52, 149, 261, 271, 356, 446, 581], although these formalisms
concern the logical rules more from the syntactical point of view than from the semantical
one [686, 688] apparently adopted here. There also seem to be approaches that try to take
the context into consideration, for which see e.g. Barwise [48, 49], Gaifman [254]. The
general questions related to conditional truth-values and the notion of context, together
with the related studies, are quite exciting. In my opinion they are also likely to contribute
to the current discussion and synthesis of the syntactic versus semantic approach to logic,
for which read the innovative work and entertaining discussions by Girard [271, 272, 274,
275] (cf. also [409, 679]).

The reason why I introduced a conditional truth-value is to make a smoother shift to
inductive logic, also called probability logic.

6. To summarise: formal logic, in its basic form,
• is a model — a simplification, schematisation, formalisation — of the way we reason

about ‘truth‘;
• simplifies and represents ‘truth’ as a dichotomic notion;
• is concerned about the relationships amongst the truth-values of premises and con-

clusions;
• does not prescribe any truth-values for the premises.
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Note that if we intend ‘true’ in a more specialised sense, e.g. as ‘provable’ as the
intuitionists do [90, 271], then the formalisation of the way we reason about it can be
different and we can have, e.g., intuitionistic logic, which can be said to have three truth-
values and wherein the law of excluded middle is not valid.

Plausibility logic

7. Suppose now that we want to build a model of — i.e., simplify, schematise, form-
alise — the way we reason about plausibility. I say ‘plausibility’, and not ‘probability’,
because the latter word is amongst scholars so impregnated with contrasting connotations
and denotations — frequency, ‘propensity’, chance, etc. — as to render it unsuitable for
our purposes. In fact, what interests me is the everyday meaning of ‘plausible’, the one
present in utterances like ‘Yes, that’s likely!’. Forget about frequency, chance, indetermin-
ism, propensity, and other similar concepts.

For the purpose of building a model, a first characteristic of the notion of plausibility
that we notice is that it comes in degrees, in contrast to truth which, at a basic level, has di-
chotomic characteristics. We say ‘very plausible’, ‘barely plausible’, ‘very unlikely’, and,
at the extremes, ‘impossible’ and ‘certain’. Moreover, the last two expressions are often
connected with (though they are not synonyms for) the expressions ‘false’ and ‘true’. This
suggests two things. The first is that in our model we can represent plausibility by a con-
tinuum. Of course, in our everyday expressions about plausibility we do not have the res-
olution of a continuum; but this schematisation offers many mathematical advantages. The
second thing is that two points of this continuum — those representing ‘impossible’ and
‘certain’ — must somehow correspond to our representation of ‘true’ and ‘false’. Already
at this point we see that our model for plausibility is likely to require a more complex
mathematical apparatus than that for truth.

A second characteristic noted about these plausibility degrees is that they are often
ordered. We say ‘this is more plausible than that’, ‘that’s less likely’, and so on. This
suggests that our modelling continuum be an ordered one, and to keep things simple we
may take it as completely ordered. Hence a generic interval [a, b] like the ordered extended
real line [−∞,+∞], or [0, 1] will suit our purposes. The lower and upper limit of the
interval must correspond to the notions of ‘impossible’ and ‘certain’.

We can therefore introduce the expression ‘P(A| I)’, taking value in a for now unspe-
cified interval, to represent the plausibility of the proposition A in the context I. Remember
that in formal logic we can use beside the expression ‘T(A| I) = 1’ also ‘I |= A’; and beside
‘T(A| I) = 0’ also ‘I |= ¬A’. A notation similar to that employing ‘|=’ would not be possible
in plausibility logic, since we have there a continuum of possible values [cf. 314, § 2]. (But
see how Hailperin [312, 313] extends the meaning of the symbol ‘|=’.)

Some authors, like Gaifman [253], Dubois and Prade [178], and perhaps de Finetti [235]
(depending on how one reads his words), see the plausibility of a proposition as defined
‘on top’ [178, § 3.3] of its truth value. This point of view seems to me superfluous and
is not the one I adopt. I rather see the plausibilistic and the truth-value structures to live
beside each other. For we usually say ‘It is likely that she went there’, not ‘It is likely that
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it is true that she went there’; the second proposition is just a roundabout form of the first.

8. Having found a way to represent the notion of plausibility, we must decide which
rules connect the plausibility values of the premises to those of the conclusions formed
by means of the logical connectives. Just as in the case of formal logic, the rules must
reflect — although necessarily in a simplified and schematised way — what we consider
as the ‘correct’ way of reasoning about plausibilities. In this first phase plausibility lo-
gic has therefore a descriptive rôle. An explicit analysis of how these rules should re-
flect our plausibilistic reasoning is apparently first given by Cox [138, 139] and then by
Jaynes [372–374, 392] and Tribus [704, 705]; cf. also Jeffreys [398, 399] and Pólya [596–
598]. I say ‘explicit’ because this conception of the theory of probability is already held
by Maxwell, by Laplace [452, p. CLIII]:

la théorie des probabilités n’est, au fond, que le bon sens réduit au calcul ; elle
fait apprécier avec exactitude ce que les esprits justes sentent par une sorte
d’instinct, sans qu’ils puissent souvent s’en rendre compte

and even by Leibniz and Jacob Bernoulli, as discussed in Hacking’s studies [309–311]; see
also Hailperin’s [313] historical discussion. Once this analysis is done, the correct way of
reasoning about plausibilities should be represented by a set of equations like (II.3) — we
cannot express the rules by tables like II.1 because, to repeat myself, we are dealing here
with an infinite set of degrees of plausibility. The ensuing set of equations depends on the
interval we have chosen to represent the plausibilities; though all these sets are, of course,
isomorphic to one another; i.e. they all represent the same reasoning. For example, if we
make the convention that P(A| I) ∈ [0, 1] (clearly for general A and I), where ‘0’ represents
impossibility and ‘1’ represents certainty, then the rules are

P(A| I) ∈ [0, 1], (II.5a)
P(¬A| I) = 1 − P(A| I), (II.5b)

P(A ∧ B| I) = P(A| I) × P(B| A ∧ I)
= P(B| I) × P(A| B ∧ I),

(II.5c)

P(A ∨ B| I) = P(A| I) + P(B| I) − P(A| I) × P(B| A ∧ I)
= P(A| I) + P(B| I) − P(B| I) × P(A| B ∧ I),

(II.5d)

formally identical with those for truth-values in terms of conditional truths. These are the
rules which we all know. With the convention that P(A| I) ∈ [−∞,+∞] instead, where
‘−∞’ represents impossibility and ‘+∞’ represents certainty, the rules take the form

P(A| I) ∈ [−∞,+∞], (II.6a)
P(¬A| I) = −P(A| I), (II.6b)

P(A ∧ B| I) = P(A| I) + P(B| A ∧ I) − ln
[
1 + eP(A|I) + eP(B|A∧I)

]

= P(B| I) + P(A| B ∧ I) − ln
[
1 + eP(B|I) + eP(A|B∧I)

]
,

(II.6c)
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the rule for the disjunction having a very complicated expression. You can find that ex-
pression by yourself from the isomorphism relating the rule set (II.5) to the rule set (II.6);
here it is:

P(A| I) 7→ ln
P(A| I)

1 − P(A| I)
. (II.7)

Other plausibility-representation intervals are possible, with corresponding rules; you can
find some in Tribus [705], pp. 26–29. It is evident that the first set of rules is the simplest;
it does not involve, e.g., transcendental functions, and has the remarkable advantage of
making the plausibility of incompatible events additive. It is moreover the one we are
quantitatively more accustomed to. The second set, on the other hand, would have the
advantage that since the plausibility ranges between −∞ and +∞ we could not confuse or
conflate plausibility with frequency — this confusion plagues us still today.

In any case, the representation (II.5) is the standard one and I shall not discuss any
other equivalent representation any further.

9. I shall not repeat all the arguments leading to the above rules; for this I refer to
the studies by Cox, Jaynes, Tribus, and the others already cited; they are an enjoyable
and illuminating reading. But the argument leading to the rule (II.5c) for the plausibility
of the conjunction, A ∧ B, is particularly compelling and quite intuitive: I present it by
counterposing it to other possible rules. So consider the question of relating the plausibility
P(A ∧ B| I) to the plausibilities P(A| I), P(B| I), or possibly also P(B| A ∧ I) and P(A| B∧ I).
Consider a rule identical with (II.3b) for truth logic,

P(A ∧ B| I) = P(A| I) × P(B| I). (II.8)

Would this rule agree with common sense? At first sight it has some desired properties;
for example, the plausibility of the conjunction is less than those of the conjuncts. But let
us examine a concrete example. Take the proposition A B ‘The left eye of the next person
you meet is blue’. In the context I of a person living, like I, in Sweden, we could say that
the plausibility of A is 1/2. Also the proposition B B ‘The right eye of the next person
you meet is brown’ has, in the same context, a plausibility around 1/2. Now according to
the rule (II.8) the plausibility of the conjunction, viz. of the proposition A ∧ B ≡ ‘The next
person you meet has a blue left eye and a brown right one’, is 1/4. But this is too much
(in the context I); I personally should assign a plausibility of 1/100 or less. The rule (II.8)
does not satisfy our way of assigning plausibilities. The same problem remains and gets
possibly worse with similar rules like some proposed in artificial intelligence, e.g.

P(A ∧ B| I) = min[P(A| I),P(B| I)]. (II.9)

According to this rule the plausibility that the next person I meet have eyes of the two
different colours would be 1/2.

The standard rule (II.5c), instead, gives an answer in accordance with common sense.
It requires in fact that we specify not the plausibility of B per se, but that of B given A.
This plausibility I should state at 1/50, and then the plausibility of the conjunction is 1/100,
which accords with my judgements.
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Of course, plausibility logic describes, in a simplified way, the way in which we think
an ideal rational person ought to reason. But in practise we often do not reason according
to our own standards, in plausibility logic as well as in deductive logic. There are very
interesting studies by Kahneman, Tversky, et al. [78, 410, 411, 718–721] on typical errors
committed in plausibilistic reasoning. Example of common errors in deductive reasoning
are given in the first chapters of Copi’s book [136].

‘Plausibilities of plausibilities’, induction, and circumstances: a
generalisation

10. The theory that emerges from the rules (II.5) is mathematically identical with prob-
ability theory as presented in standard textbooks, and subsumes all usual applications of
probability theory. For this reason I do not think necessary to further discuss various the-
orems like e.g. Bayes’, the theorem on total plausibility, or standard applications. For
these I refer to the works by Jaynes [392], Jeffreys [398, 399], Bernardo and Smith [66],
de Finetti [240, 241], Gregory [294], and to the works by Hailperin [313] and Adams [1, 2],
which are very relevant yet virtually unknown to the physics community.

The import of the plausibility-logical point of view is not so much on the purely math-
ematical side, as on the vast new range of applications and insights that it opens. Two
of these insights concern the interpretation of the parameters in various statistical models,
especially the ‘generalised Bernoulli’ one; and the relation between plausibility and induc-
tion. These subjects are discussed in Papers (F) and (G), the contents of which I shall
hereafter assume to be known (i.e., this is an appropriate place to read those papers). My
purpose here is to extend the Laplace-Jaynes approach to multiple kinds of measurements,
so as to make clearer its connexion, to be presented in ch. IV, with the vector framework
for the plausibilistic properties of physical systems introduced in the next chapter.

11. The extension of the Laplace-Jaynes approach, as presented in § 5 of Paper (G),
to multiple kinds of measurements is straightforward. We introduce different kinds of
measurement, denoted by Mk. Each measurement has a set of outcomes {Ri | i ∈ Λk};
we shall often omit the indication of the index set Λk, since no ambiguity should arise.
Different instances of these measurements and of their outcomes are denoted by an index
‘(τ)’, as in the paper.

Remember that the terms ‘measurement’ and ‘outcome’ have broader denotations than
usual. See § 2 of the mentioned paper on this point.)

The main question is to determine plausibilities of the form

P(R(τN+L)
iN+L

∧ · · · ∧ R(τN+1)
iN+1
|M ∧ R(τN )

iN
∧ · · · ∧ R(τ1)

i1
∧ I), (II.10)

where the symbol ‘M’ has the same meaning as described in Paper (G), § 2, but for
the fact that it can concern different kinds of measurement. The introduction of a set
of circumstances proceed as usual; only properties (II) and (III) need to be amended, as
follows:
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III. The amendment to the second property is clear and does not need any comments:

P(R(τ)
i |M(τ)

k ∧ D ∧C(τ)
j ∧ I) = P(R(τ)

i |M(τ)
k ∧C(τ)

j ∧ I)

for all τ , k, i ∈ Λk, j, and all D representing a conjunction of measure-
ments, measurement outcomes, and circumstances of instances different
from τ . (II.11)

IV. Also the amendment to the third property is quite clear:

P(R(τ ′)
i |M(τ ′)

k ∧C(τ ′)
j ∧ I) = P(R(τ ′′)

i |M(τ ′′)
k ∧C(τ ′′)

j ∧ I) C pi j for all τ ′, τ ′′, (II.12)

which mathematically expresses the fact that we consider the M(τ)
k , R(τ)

i , C(τ)
j , for

different τ and fixed k, i, j, as ‘instances’ of the ‘same’ measurement, the ‘same’ out-
come, and the ‘same’ circumstance. Thanks to this property we can use an expression
like ‘P(Ri|Mk ∧C j ∧ I)’ unambiguously; it stands for

P(Ri|Mk ∧C j ∧ I) B P(R(τ)
i |M(τ)

k ∧C(τ)
j ∧ I) for any τ ,

≡ pi j with i ∈ Λk.
(II.13)

12. Having made the above alterations to the properties of the circumstances, the de-
termination of the plausibilities (II.10) proceeds along the lines of § 5.2 of Paper (G).
Given the plausibilities

P(Ri|Mk ∧C j ∧ I) ≡ pi j (B P(R(τ)
i |M(τ) ∧C(τ)

j ∧ I) for any τ), (II.14)

P(C j| I) ≡ γ j (B P(
∧′

jC
( j′)
j | I) ≡ P(C(τ)

j | I) for any τ), (II.15)

(with i ∈ Λk), and given some data D consisting in some outcomes of various kinds of
measurements,

D B R(τN )
iN
∧ · · · ∧ R(τ1)

i1︸                ︷︷                ︸
Ri appears Ni times

(with ia ∈ Λka , a = 1, . . . ,N), (II.16)

the plausibility assigned to any collection of L measurement outcomes, with frequencies
(Li), is given by

P(R(τN+L)
iN+L

∧ · · · ∧ R(τN+1)
iN+1︸                    ︷︷                    ︸

Ri appears Li times

|M ∧ D ∧ I) =

∑

j

[ ∏

k,i∈Λk

P(Ri|Mk ∧C j ∧ I)Li

]
P(C j|D ∧ I) ≡

∑

j

( ∏

k,i∈Λk

pLi
i j

)
P(C j|D ∧ I), (II.17)

with

P(C j|D ∧ I) =

( ∏
k,i∈Λk

pNi
i j

)
P(C j| I)

∑
j

( ∏
k,i∈Λk

pNi
i j

)
P(C j| I)

. (II.18)



16 II. PLAUSIBILITY LOGIC AND INDUCTION

13. The next step of this generalisation is to define an equivalence relation amongst
circumstances. The natural choice is, of course,

Definition 1. Two preparation circumstances C′, C′′ are said to be equivalent if they lead
to identical plausibility distribution for each kind of measurement Mk:

C′ ∼ C′′ ⇐⇒ P(Ri|Mk ∧C′ ∧ I) = P(Ri|Mk ∧C′′ ∧ I) for all k and i ∈ Λk. (II.19)

The propositions above should really all have an index ‘(τ)’, and the equivalence re-
lation should be defined for each instance τ; but, thanks to the properties (I)–(IV) of the
circumstances, the instantial index can be unambiguously left out.

In Papers (F) and (G) we proceeded with disjoining equivalent circumstances together
and with ‘plausibility-indexing’ the resulting disjunctions. I shall however follow a slightly
different path in the present case, to be discussed in § 39.

Miscellaneous remarks

14. We have not discussed the meanings of the three logical connectives ‘¬’, ‘∧’, and
‘∨’; and I really do not plan to discuss them either, for they should be intuitively clear;
appropriate references to logic texts are given in footnote 1. Yet, whilst every logician and
mathematician — even if amateurs —, and most philosophers and physicists have a clear
understanding of those meanings, there are some individuals that attribute to those symbols
‘non-standard’3 meanings, apparently out of nowhere, as testified by the literature. A non-
standard meaning that I have a couple of times noted in the literature is that of conceiving
the conjunction as having a sort of temporal meaning, which it should properly not have.
E.g., some people interpret the expression ‘A ∧ B’ as implying that B is a statement about
matters that temporally precede those of A. Others interpret it as saying that A and B
concern simultaneous matters. All I can say in this regard is: this is not standard (not to
say erroneous)! People employing ‘conjunction’ that way should better find another name
and another symbol for it, since their idiosyncratic use clashes not only with old logical and
mathematical conventions and usage, but also with engineering standards like ISO [362]
and ANSI/IEEE [358] (which adopt the standard logical usage).

Analogous idiosyncrasies I have noted with respect to the conditional symbol ‘|’, al-
though in this case they are more common and can even form minor schools. Some people
attribute to the conditional symbol ‘|’ a temporal or even a causal meaning, interpreting
‘A| B’ as saying that B comes before A or that B causes A. That this is not the case is easily
seen by considering

A B ‘The sky is cloudy’, B B ‘It is raining’. (II.20a)

Given that it is raining, I think you agree with me that it is very likely that the sky is cloudy
as well; in symbols, this is written

P(A| B ∧ I) = a, (II.20b)
3In this case the boundary between ‘non-standard’ and ‘erroneous’ is very fuzzy.
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where a is near 1. This expression makes complete sense. But in it the rain comes surely
not before the cloudiness, nor is the rain a cause of the cloudiness (one could rather say
the opposite). This very simple example shows that the conditional symbol ‘|’ expresses a
logical, not a temporal or causal relation here. It expresses relevance in respect of know-
ledge. We have another example if we consider two persons, say husband and wife, only
one of whom has, in the pocket, the only key to a particular door. Suppose the husband
does not know whether the key is in his own pocket. But he comes to know (e.g., by a
telephone call, or reading a note on a paper) that the wife — who can be miles away —
does not have the key in her own pocket. This automatically implies for the husband that
the key is in his pocket. Denoting by

A B ‘The husband has the key’, B B ‘The wife does not have the key’, (II.21a)

and by I the whole context (which include the assumption that none lost the key), we can
rightfully write

P(A| B ∧ I) = 1. (II.21b)

But again, there are no temporal or causal connections between the facts stated by A and
B here (the wife’s not having the key is not the ‘cause’ of the husband’s having it). The ‘|’
expresses the relevance of the second piece of data, B, for the first, A.

I do not understand why some people would like to limit the scope of the conditional
symbol ‘|’ to temporal or causal connexions only, thus forbidding completely meaningful
expressions like (II.20) and (II.21). Such relevance relations and judgements are routinely
used, whether implicitly or explicitly, also in laboratory practise, where it is often the case
that some detail of a set-up tells us something about some other detail, yet without being
a ‘cause’ of the latter or ‘preceding’ it in time. And of capital importance is their use in
communication theory, where a fundamental problem is to increase our knowledge about a
sent signal or message, A, from knowledge of a received one, B. The plausibility P(A| B∧I)
is here the fundamental quantity to be judged, and the temporal and causal arrows clearly
go from A to B, not vice versa! Communication theory would simply be impossible if the
meanings of the conditional and the conjunction symbols were restricted as those people
use them.

When such people, ignoring their own idiosyncrasies, read and comment works that use
standard notation, some preposterous results may arise indeed. As in the case of Brukner
and Zeilinger’s analysis of Shannon’s entropy in quantum experiments [94]. Shannon’s
use of the conjunction and of the conditional symbol in his deservedly famous article [655;
cf. also 656] is quite standard of course — otherwise he could not have built any theory at
all on the problem of ‘reproducing at one point either exactly or approximately a message
selected at another point’ [655, Introduction]. Concrete example: in § 12 he explicitly
calculates and states that P(A| B ∧ I) = 0.99, where B B ‘A 0 is received’ and A B ‘A
0 was transmitted’. But Brukner and Zeilinger did apparently not notice this, and based
their analysis on the tacit understanding that ‘A| B’ means that the measurement related to
B temporally precedes that related to A. This led them, amongst other things, to change
a whole experimental set-up, in which A preceded B, into a new one in which the order
of measurement was reversed — all in order to calculate quantities involving ‘A| B’! It
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is as if, in order to calculate the plausibility of a particular input given the output of a
communication channel, we needed to exchange the input with the output; with the only
result of constructing — granted the possibility of that operation — a different channel.
Simply meaningless! A recount and more detailed analysis of this and related questions is
given in Paper (A).

15. We already saw that what plausibility logic does is to give us the plausibilities of
some propositions, the conclusions, provided that we give those of other propositions, the
assumptions. And as remarked this is completely analogous to what truth logic does. An
aspect on which there has been and there still is much debate is the question of making the
initial plausibility assignments. The various positions within the Bayesian community as
regards this aspect can be roughly grouped into two groups. One group, the ‘objectivists’,
maintain that the plausibility of whatever proposition A is determined by the context I, if
the latter is completely specified. To this group seem to belong Jeffreys (but see [754]),
Carnap, and Jaynes amongst others. The other group, the ‘subjectivists’, maintain that the
plausibility of whatever proposition A is a matter of subjective judgement, and two persons
sharing exactly the same context could nevertheless assign different plausibilities to the
same proposition. To this group belong de Finetti and Savage amongst others.

I must say that the statement that ‘two persons sharing exactly the same context can
nevertheless assign different plausibilities’ appears a bit vacuous to me, since no two per-
sons can ever share exactly the same context. I think that it is always possible to trace a
difference in plausibility assignments back to different experiences, i.e., different contexts
(I have done some informal experiments upon friends on this — try yourself: just keep
asking ‘why?’ long enough). This would seem to strengthen the thesis of the objectivists.
And yet, I think it also impossible to specify a context exactly (in those experiments, the
answers to the whys always tend to be hazier and hazier). So the objectivist programme
appears somewhat vacuous as well. In fact, I am not convinced that the methods that have
been proposed to ‘mechanically’ assign a plausibility from some kinds of contexts really
achieve their purpose. However, I do not mean that those methods are not useful; quite
the contrary. My personal position simply is that the question of the initial plausibility as-
signments does not concern, and cannot be answered by, plausibility theory — just like the
question of the initial truth-value assignments does not lie within the jurisdiction of formal
logic. Both assignment problems are certainly very important, but their settling resides
at a ‘meta-theoretical’ level that I think cannot be fully caged into a mathematico-logical
formalism. The assignment of initial plausibilities and initial truth-values is a matter of
discussion and convention that lie outside any precise theory.

16. A deplorable habit of not few physicists, and not few mathematicians and logicians
either, is that of neglecting the context in which a given plausibility assignment applies.
This is very surprising as regards physicists, because they are surely the first to pay atten-
tion to, and to specify as exactly as possible, the details and boundary conditions of their
experiments. The problem is that this negligence leads to errors, seeming contradictions,
and false statements. An egregious case is the statement, which I have read more than once,
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that ‘quantum mechanics violates the sum rule of probability theory’, i.e., rule (II.5d):

P(A ∨ B| I) = P(A| I) + P(B| I) − P(A ∧ B| I), (II.5d)r

especially with regard to the double-slit experiment and similar ones. Let us see what
plausibility theory says about this experiment. See also Szabó’s discussion [681, 682]
(although he assumes a frequentist point of view).

Consider the usual set-up with two slits, called ‘A’ and ‘B’, the source of particles, the
detection screen, etc. Introduce the mutually exclusive propositions

IAB̄ B ‘Slit “A” is open, “B” is closed’, (II.22)
IĀB B ‘Slit “B” is open, “A” is closed’, (II.23)
IAB B ‘Both slits are open’, (II.24)

and the propositions

A B ‘The particle passes through slit “A” ’, (II.25)
B B ‘The particle passes through slit “B” ’, (II.26)

Dx B ‘The particle is detected at the screen position x’. (II.27)

Our invariable situation will be the following:

I B ‘A particle is sent towards the slits, and is detected somewhere in the screen’.
(II.28)

So we shall not consider the situation in which the particle does not arrive at the screen,
e.g. because it did not pass through any slit. In our situation the particle must have passed
through one of the slits, hence we have

P(A ∨ B| I) = 1, (II.29)

and note that this holds in each of the cases IAB̄, IĀB, IAB. We also assume that we are
speaking of particles that do not break into parts, so that

P(A ∧ B| I) = 0; (II.30)

i.e., the particle cannot pass through both slits.
Now consider the case in which both slits are open, IAB. What is the plausibility that

the particle is detected at x? By the rules of plausibility logic, it is

P(Dx| IAB ∧ I) = P[Dx| (A ∨ B) ∧ IAB ∧ I],
= P(Dx| A ∧ IAB ∧ I) P(A| IAB ∧ I) + P(Dx| B ∧ IAB ∧ I) P(B| IAB ∧ I),

(II.31)

i.e., the sum of the plausibility that the particle is detected at x given that it passes through
‘A’ times the plausibility that it passes through ‘A’, and the analogous product for ‘B’. What
more does plausibility theory says? Nothing!
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To have a numerical answer we must specify the functions

P(Dx| A ∧ IAB ∧ I) = fA(x), P(Dx| B ∧ IAB ∧ I) = fB(x), (II.32)

and the quantities

P(A| IAB ∧ I) = pA, P(B| IAB ∧ I) = pB; (II.33)

but that is not something that plausibility theory can do. Those plausibilities must be dic-
tated by some physical theory. Until this has been done, plausibility theory leaves open an
infinity of possibilities; in particular, also those dictated by quantum mechanics: plausibil-
ity theory does not exclude ‘interference effects’. So why do some people say that ‘quantum
mechanics violates plausibility theory’? probably what they mean is that the plausibilit-
ies (II.32)–(II.33) assigned by quantum mechanics are different from those assigned by
some ‘classical’ physical theory.

First conclusion: quantum mechanics does not violate the rules of plausibility theory; it
only assigns plausibilities that differ from those of some classical theory. But both theories
respect the plausibility rules.

From the form of eq. (II.31) we also notice another fact. Since, from eqs. (II.29)
and (II.30), P(A| IAB ∧ I) + P(B| IAB ∧ I) = 1, it follows that the plausibility for the particle
to be detected at x can never be equal to the sum of P(Dx| A ∧ IAB ∧ I) (the plausibility
that the particle be detected there given that it passes through ‘A’), and P(Dx| B ∧ IAB ∧ I)
(similarly, but passes through ‘B’). At most, there can be a proportionality with factor of
1/2 when P(A| IAB ∧ I) = P(B| IAB ∧ I) = 1/2.

But then, what about Feynman’s formulae [231, § 1-1; 232, ch. 1]

‘ P12 = P1 + P2 ’, (II.34a)
‘ P12 , P1 + P2 ’? (II.34b)

His notation with ‘P12’, ‘P1’, and ‘P2’, as is clear from his discussion, stands for

P12 B P(Dx| IAB ∧ I), (II.35)
P1 B P(Dx| IAB̄ ∧ I), (II.36)
P2 B P(Dx| IĀB ∧ I); (II.37)

i.e., P12 is the plausibility that the particle be detected at some point given that both slits are
open, P1 the plausibility given that slit ‘A’ is open and ‘B’ closed, and P2 the plausibility
given that slit ‘B’ is open and ‘A’ closed. You note that these are plausibilities conditional
on incompatible propositions; so the expressions P12 = P1 + P2 and P12 , P1 + P2 have
nothing to do with the sum rule of plausibility theory, eq. (II.5d). Indeed, the following
theorem of plausibility logic holds:

Theorem II.1. Given that

P(Dx| A ∧ IAB ∧ I) = fA(x), (II.38)
P(Dx| B ∧ IAB ∧ I) = fB(x), (II.39)
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Figure II.1: Space-time diagram for the Einstein-Podolsky-Rosen thought-experiment

with fA(x), fB(x) ∈ [0, 1] fixed but arbitrary, the only constraints imposed by the rules of
plausibility logic to

P(Dx| IAB ∧ I) (II.40)

are that it be non-negative and not greater than one — i.e., no constraints at all apart the
usual ones for plausibilities.

The theorem can be proven by standard linear-programming methods [151, 152, 312,
313].

The conclusion is again: statements asserting violations of plausibility theory on the
part of quantum mechanics are completely false. See also the discussion by Koopman [441]
and Strauß [672].

17. Another egregious misapplication of plausibility theory lies at the core of one of
the most celebrated theorems of our time: Bell’s theorem [54, 55, 126, 127]. This misap-
plication (that does not concern fair sampling or other similar arguments) is an example
of those discussed in § 14; it is first pointed out by Jaynes [387], and lucidly discussed by
Morgan [534] (see also Kracklauer [442–444]).

Consider the usual set-up of the Einstein-Podolsky-Rosen experiment [193] as mod-
ified by Bohm. In each of two space-like separated regions ᾱ and β̄ a spin measure-
ment is performed on an ‘object’ — usually considered a particle of a pair, but from a
field-theoretical viewpoint it should rather be a field — whose state depends on the set
of ‘hidden’ variables λ of a region γ̄ given by the intersection amongst a space-like hy-
persurface and the past light-cones of the regions ᾱ and β̄ , as in Fig. II.1. In the region
γ̄ the two ‘objects’ are prepared according to a fixed procedure. We know some details
of the experimental set-ups in the two measurement regions, viz. the orientations a and
b of the two measuring Stern-Gerlach apparatus. What we ask is the plausibility that the
measurements yield outcome Ã for the measurement in region ᾱ and outcome B̃ for that
in β̄ . What we assume is that there is some local and deterministic theory — possibly a
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field theory — that describes all the fundamental microscopic ‘hidden’ variables involved
in the preparation and the measurements. Note that a, b, Ã, B̃ are macroscopic parameters
or quantities, i.e., they are related through some sort of ‘coarse graining’ (space or time
averages [359, 421–425, 539–550], or Fourier transforms [623]) to the underlying funda-
mental microscopic quantities in the respective regions; much like pressure in relation to
the positions and momenta of the particle of a gas and of its environment. The variables λ ,
on the other hand, are amongst the fundamental microscopic, ‘hidden’ quantities, and are
not obtained by coarse graining; this means, in particular, that they cannot be affected by
‘thermalisation’ or similar processes.

The assumption of determinism implies that the values of the fundamental microscopic
quantities in region ᾱ , and hence also the values of all the derived ‘coarse-grained’ quant-
ities therein, are completely determined (through some functions or functionals) by the
values of the microscopic quantities in earlier space-time regions. The assumption of (re-
lativistic) locality implies that only the microscopic quantities in the past-light cone of
region ᾱ are necessary and sufficient for this determination. The same holds for region β̄ .
See again Fig. II.1. In formulae,

Ã = fÃ(λ , . . . ), a = fa(λ , . . . ), (II.41)
B̃ = fB̃(λ , . . . ), b = fb(λ , . . . ), (II.42)

where the dots stand for other microscopic variables in the non-intersecting parts of the
two past-light cones. In more generic terms we can say that knowledge of λ is in general
relevant to knowledge of each of a, b, Ã, B̃. Note that the equations above cannot in
general be inverted to obtain the value of λ from those of a, b, Ã, B̃ (we should need all
the microscopic quantities in the future light-cone of region γ̄ to do this); but knowledge
of these can imply some restrictions in the possible values that λ may have. In formulae,4

λ ∈ f −1
Ã ({Ã}) ∩ f −1

B̃ ({B̃}) ∩ f −1
a ({a}) ∩ f −1

b ({b}). (II.43)

In other words, the knowledge of each of a, b, Ã, B̃ is in general relevant to the knowledge
of λ .

Note that the assumption of determinism can be weakened: we may assume that the
theory only plausibilistically determines the values of a, b, Ã, B̃ from those of λ . But in
respect of relevance, the points made in the previous paragraphs still hold.

Let us put all this in form of propositions. Introduce the context I, which includes a
description of all our assumptions and set-up, and the propositions

a B ‘The apparatus in region ᾱ is oriented along a’, (II.44)

b B ‘The apparatus in region β̄ is oriented along b’, (II.45)
Λλ B ‘The ’hidden variables’ in γ̄ have values λ ’, (II.46)

A B ‘The result of the measurement in region ᾱ is Ã’, (II.47)

B B ‘The result of the measurement in region β̄ is B̃’. (II.48)

4I should really write something like ‘( f −1
Ã

)1’ to indicate that I only consider the first argument of fÃ for the
inverse mapping, etc.; but I do not want to encumber the notation.



§17. 23

The plausibilities that interest us are

P(A ∧ B| a ∧ b ∧ I). (II.49)

This plausibility can be written as a marginalisation on the possible values of λ :

P(A ∧ B| a ∧ b ∧ I) =

∫
p(A ∧ B ∧Λλ | a ∧ b ∧ I) dλ , (II.50)

and using the product rule we obtain

P(A ∧ B| a ∧ b ∧ I) =∫
P(A| B ∧Λλ ∧ a ∧ b ∧ I) P(B|Λλ ∧ a ∧ b ∧ I) p(Λλ | a ∧ b ∧ I) dλ . (II.51)

Up to now our analysis coincides with that of Bell; and no other assumptions than
determinism and locality have been used. But at this point Bell makes the following addi-
tional assumptions:

First,
P(A| B ∧Λλ ∧ a ∧ b ∧ I) = P(A|Λλ ∧ a ∧ I), (II.52)

i.e., knowledge of the orientation and outcome in region β̄ , given that λ is known, is not
relevant to knowledge of the outcome in ᾱ . This is acceptable for the following reason.
Knowledge of b and B̃ is relevant in that it can restrict the possible value of λ and of the
other microscopic quantities in the non-intersecting part of past light-cone of β̄ . But λ is
already known, so knowledge of its restrictions is superfluous; and the restrictions on the
other microscopic quantities are, by locality, irrelevant for region ᾱ , since they lie outside
its past light-cone. Therefore b and B̃ cannot tell us anything new for a and Ã. Note,
however, that had λ denoted only part of the microscopic quantities in γ̄ , then b and B̃
would have been relevant and Bell’s assumption (II.52) would not have held.

Bell’s second assumption is that

P(B|Λλ ∧ a ∧ b ∧ I) = P(B|Λλ ∧ b ∧ I), (II.53)

which is also acceptable for a reasoning analogous to that of the first assumption, provided
that λ denotes all the microscopic quantities in γ̄ .

Bell’s third assumption,

p(Λλ | a ∧ b ∧ I) = p(Λλ | I), (II.54)

is however untenable. It says that knowledge of a and b is irrelevant for the knowledge of
λ . But we have seen from eqs. (II.41), (II.42), and especially (II.43) that knowledge of a
and b can impose restrictions on the values of λ and is therefore relevant to its knowledge.
This is the meaning of leaving ‘a∧b’ in the context of ‘P(Λλ | a∧b∧ I)’. Bell’s assumption
is unwarranted and, in general, unphysical. In general, it contradicts the assumption of de-
terminism. Not only in the case of strict determinism, but also in the case of a plausibilistic
relation between λ and a, b.
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Many physicists suddenly turn into mystics when it comes to Bell’s last assumption
above. They say: ‘But the propositions a and b concern the orientation of the apparatuses,
which may be chosen by us; you mean then that we have no free will in our decisions?’ —
Of course I do! or have they perhaps forgotten that our assumption was determinism? They
must decide: do they want this theorem to concern local deterministic physical theories,
or to concern a religious question? What will their next assumption invoke? the Holy
Trinity? Here lies another, perhaps deeper problem: the fact that we physicists often take
a philosophical pose, but our philosophical remarks are usually naïve and cheap, no better
than those of a gymnasial student making the first reflections on human nature. Indeed,
the question of ‘free will’ was definitively shown by Wittgenstein [745–747] to be simply
void, only a Sprachspiel.

So we cannot accept the last assumption, since in general it contradicts one of the two
basic assumptions of the theorem. Once it is discarded, our sought plausibility takes the
final form

P(A ∧ B| a ∧ b ∧ I) =

∫
P(A|Λλ ∧ a ∧ I) P(B|Λλ ∧ b ∧ I) p(Λλ | a ∧ b ∧ I) dλ , (II.55)

and it can be shown that the inequalities obtainable from this decomposition have an up-
per bound of 4 (the maximum possible), instead of the usual 2 presented in the literat-
ure [534]. The conclusion is that (a) Bell’s theorem, as is usually stated and taught, proves
nothing about general local deterministic ‘hidden-variable’ theories; (b) the various exper-
iments [23, 24] that confirm (pace loopholes) a violation of Bell’s inequalities, have noth-
ing to say as regards the exclusion of general local deterministic ‘hidden-variable’ theories,
since they only show a violation of the bound of 2, not 4 as required in our derivation. The
latter bound, however, is the maximum possible and cannot be violated by any experiment
— in the same sense in which no experiment can ever show a relative frequency greater
than 1.



III. A mathematical framework for the
plausibilistic properties of physical
theories

What is a physical theory?

18. The official place that plausibility logic has in natural philosophy is very prominent
today — I say ‘official’ because, at least at an intuitive and informal level, plausibility logic
has always been an essential element in the mathematical study of nature. Only the idea of
trying to list some research areas primarily based on plausibility logic seems meaningless:
these areas are too many, and there are no well-defined boundaries between them.

Wanting to make a sort of schema of the ways in which plausibility logic is used in a
physical theory, we should need a general idea of what a physical theory is. Let me first
quote this beautiful passage from Truesdell [714, Prologue]:

A theory is a mathematical model for an aspect of nature. One good theory
extracts and exaggerates some facets of the truth. Another good theory may
idealize other facets. A theory cannot duplicate nature, for if it did so in all
respects, it would be isomorphic to nature itself and hence useless, a mere re-
petition of all the complexity which nature presents to us, that very complexity
we frame theories to penetrate and set aside.

If a theory were not simpler than the phenomena it was designed to model,
it would serve no purpose. Like a portrait, it can represent only a part of the
subject it pictures. This part it exaggerates, if only because it leaves out the
rest. Its simplicity is its virtue, provided the aspect it portrays be that which
we wish to study. If, on the other hand, our concern is an aspect of nature
which a particular theory leaves out of account, then that theory is for us not
wrong but simply irrelevant. For example, if we would analyse the stagnation
of traffic in the streets, to take into account the behavior of the elementary
particles that make up the engine, the body, the tires, and the driver of each
automobile, however “fundamental” the physicists like to call those particles,
would be useless even if it were not insuperably difficult. The quantum the-
ory of individual particles is not wrong in studies of the deformation of large

25
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samples of air; it is simply a model for something else, something irrelevant
to matter in gross.

What I need for the present discussion is to try to identify some general features that
all physical theories and models have in common. One of these features, which also char-
acterises truth logic and plausibility logic, is the following: a physical theory or model
is something which, given some — possibly hypothetical — knowledge about particular
facts, like observations, set-ups, etc., provides us with — possibly hypothetical — know-
ledge about other related facts.1 We can call these knowledges ‘a priori’ and ‘a posteriori’;
but I must hurry to remark that these adjectives do not refer to temporal characteristics
of the objects or facts of knowledge. In fact, the ‘a priori’ knowledge may e.g. engage
quantities at a time t0 and the ‘a posteriori’ one quantities at a time t1 with t1 < t0. I shall
sometimes also use the terms ‘initial’ and ‘final’, but the same remark holds for them as
well — even more. Chronologically more neutral terms, which I shall also use, are ‘in-
put’ and ‘output’; they unfortunately suggest that some sort of ‘connecting algorithm’ is
available, which is not always the case.

Exemplifying interlude (which also introduces some notation)

19. To make the very general characterisation of a physical theory given in § 18 more
concrete, let me give some descriptive, but not yet mathematical, examples of ‘classical’
theories.2 I shall then make one of these examples mathematically explicit in § 20.

In ‘classical’ theories we usually have a basic system of equations, which includes
general laws — expressing e.g. principles of balance or conservation — and possibly some
constitutive equations. By specifying additional particular constitutive equations as well as
initial- and boundary-value data, we obtain a system of integro-differential equations with
a unique solution. This usually describes the ‘motion’ of a particular set of quantities. Note
that the term ‘motion’ can generally mean (e.g., in relativistic theories) the specification of
the resulting quantities in given space-time regions.

From the point of view of the general characterisation given in the previous section,
the additional constitutive equations and the boundary conditions represent our ‘a priori’
knowledge, and the solution of the equations our ‘a posteriori’ knowledge. In this example

1Göran Lindblad amusingly remarked at a seminar of mine that the above characterisation could also be
given of religion; and he is surely right. One could therefore add that the knowledge provided by a model is the
distillate and often the generalisation of experience and observations, not an ecstatic revelation sent by the gods.
Surely there are many other qualifications that ought to be given in trying to describe what a physical model is.
But my humble purpose is only to try to motivate the mathematical framework to be introduced presently, not to
start a discussion of philosophy of science. For such discussions I can but refer to greater and lesser masters like
Duhem [181], Poincaré [594, 595], Truesdell [708, 713] (see also [709] and the introductions in [712, 714–716]),
Bunge [102, 104] (see also [99, 100, 103]), and others.

2Unfortunately many physicists (especially quantum mechanicians) that occupy themselves also of ‘founda-
tions’ seem to always have in mind the equation ‘classical (Galilean-relativistic) physics’ = ‘classical mechanics
of point particles’; thus leaving out the greatest and most complex part of classical physics, the continuum elec-
tromagnetothermomechanical theories [e.g., 74, 158, 159, 197, 203, 206, 207, 213, 214, 216, 217, 509, 634, 660,
710, 712, 715, 716, 733, 734], of which analytical mechanics is only a special case.
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both types of knowledge are precise and unique, or we could say certain. This is often the
meaning of the adjective ‘deterministic’ applied to these theories.

But the analysis can be generalised. If we specify only a part of the necessary con-
stitutive equations or a part of the boundary values, then the solution is no longer unique
but belongs to a more or less restricted class of possible solutions. This class represents in
this case our a posteriori knowledge, even if it is not as detailed as that represented by a
unique solution. The next step of this generalisation is to consider boundary data (or even
constitutive equations) that are uncertain, introducing some plausibilities for them. The
solutions will then also have a plausibilistic nature.

It is easy to formulate concrete examples. The first and surely the most familiar to
quantum physicists is that of a ‘classical’ system of point particles whose interaction is
specified either by assigning a system of forces, or a Hamiltonian or Lagrangian function,
or a more general evolution operator. The a priori knowledge usually pertains a particular
value for the set of positions and velocities (and, in rare cases, even accelerations) of the
particles at a given instant; the a posteriori knowledge pertain a whole and unique trajectory
for the positions of the particles, for preceding and subsequent instants. But we can also
specify a given time interval (positive or negative) amongst the a priori data, and in this case
the a posteriori knowledge may simply concern the value of the set of positions, velocities,
etc., after or before such a time interval. Thus this example also shows that there are no
precise prescriptions as to what is ‘a priori’ and what is ‘a posteriori’ knowledge: this
division depends on what we already know (‘a priori’) and what we ask (‘a posteriori’).
The generalisation of this example leads to statistical mechanics [603]. If our a priori
knowledge consists not in a precise value for the set of positions etc., but in a set of possible
ones with assigned plausibilities, then the a posteriori knowledge will consist in a set of
possible trajectories with particular plausibilities.3

An example from more general modern continuum theories is provided by a body on
which the fields of stress, (free) energy, heating flux, and entropy (and possibly electro-
magnetic fields) are defined and satisfy appropriate balance laws, as well as additional
constitutive equations that characterise a particular material. The a priori knowledge gen-
erally consists in the history (or equivalence classes of histories) of the deformation and
temperature fields of the body. Required is the a posteriori knowledge of the motion of
the other fields. Plausibilistic generalisations of this example are not so common, see e.g.
Beran [65]; yet they are conceptually straightforward, even if mathematically demanding.

20. Let us rephrase the point-particle example of § 19 in mathematical notation. The
positions, velocities or momenta, etc. of the particles can be called ‘phase coordinates’ and

3The plausibilities for the initial data are usually called — by many still today, unfortunately — an ‘en-
semble’; a term that dates back to the days in which many physicists were still confused about what plausibility
is, and needed to imagine an infinity of fictive copies of the physical situation under study. Today we do not need
such fictions, and that term causes only confusion. We have only one physical situation — the one under our
senses — and all we are doing is making plausibility judgements about some unknown details of its. Note that
by ‘ensemble’ I do not mean a real collection of a finite number of systems or objects; I call this an ‘assembly’,
a term proposed by Peres [584]. Unfortunately the literature witnesses also a confusion about ‘ensemble’ and
‘assembly’ [130, 131, 478, 479, 691].
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denoted by z. Their space4 is Γ . The dynamics is specified by a mapping, or ‘evolution
operator’,

U : (t0, t1) 7→ Ut0,t1 , Ut0,t1 : z0 7→ Ut0,t1 (z0) (III.1)

that maps the phase point z0 at time t0 to the point Ut0,t1 (z0) at time t1, and satisfies the
usual Chapman-Kolmogorov law [125, 507]

Ut0,t1 ◦ Ut1,t2 = Ut0,t2 ,

Ut,t(z) = z.
(III.2)

We assume we have all needed smoothness. The evolution operator can represent a solution
of the equations of motion ż(t) = v[z(t), t] for a time-dependent vector field v(z, t). The a
priori knowledge then consists in a pair of values t0, z0, and the a posteriori knowledge
consists in the motion t 7→ Ut0,t(z0) or, if a particular time t1 is specified (and remember
that we could have t1 < t0), simply in the phase coordinate z1 = Ut0,t1 (z0).

All this can be rephrased in a language appropriate to plausibility logic. We must
keep in mind that the phase coordinates z at a time t represent the possible ‘outcomes’
{R(t)

z | z ∈ Γ } of a particular ‘measurement’ M(t) performed at that time5. What I call
‘measurement’ is not always an observation: sometimes it is an active selection. Our a
priori knowledge Cc can be expressed by saying that the proposition R(t0)

z0 , given M(t0), is
true or certain:6

P(R(t0)
z0 |M(t0) ∧Cc ∧ I) = 1, (III.3)

or better, in terms of a plausibility distribution,

p(R(t0)
z |M(t0) ∧Cc ∧ I) dz = δ(z − z0) dz. (III.4)

The knowledge implicit in the equations of motions (which is included in the proposition I)
can be expressed in the same logical terms. The equations say that given the data R(t0)

z0 ∧M(t0)

(irrespectively of Cc), and given that we perform a measurement M(t1) at time t1, we are
certain to obtain the outcome R(t1)

z1 such that z1 = Ut0,t1 (z0):

p(R(t1)
z |M(t1) ∧ R(t0)

z0 ∧ M(t0) ∧ I) dz = δ[z − Ut0,t1 (z0)] dz. (III.5)

These two pieces of knowledge together lead to our a posteriori knowledge, simply by
the rules of plausibility theory (II.5) (more specifically, the theorem on total plausibility):

4I would only say ‘manifold’, since no additional structures are assumed for Γ in this example.
5Which also implies the tacit performance of a time measurement.
6Note that the derivations that follow, including the integrations and the products of deltas, are mathematic-

ally rigorous, even if some details are left out. I am using Egorov’s theory of generalised functions [164, 185, 186]
(see also [162, 163, 471, 566]), which means that the deltas are implicitly specified by appropriate sequences.
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given Cc, the plausibility that a measurement at time t1 yields an outcome within dz is

p(R(t1)
z |M(t1) ∧Cc ∧ I) dz =∫

Γ

p(R(t1)
z |M(t1) ∧ R(t0)

z′ ∧ M(t0) ∧Cc ∧ I) p(R(t0)
z′ |M(t0) ∧Cc ∧ I) dz′ dz =

∫

Γ

δ[z − Ut0,t1 (z′)] δ(z′ − z0) dz′ dz = δ[z − Ut0,t1 (z0)] dz; (III.6)

in other words, we are certain of the outcome z1 B Ut0,t1 (z0).
Up to now we could have comfortably done without plausibility theory: eqs. (III.4)–

(III.6) have only restated in a cumbersome way what was basically already implicit in
eqs. (III.1) and (III.2). But let us now consider the generalised case with a priori data
Cu upon which knowledge of a specific z0 at time t0 is uncertain. We have a plausibility
distribution

p(R(t0)
z |M(t0) ∧Cu ∧ I) dz = ft0 (z) dz (III.7)

for some specific normalised positive generalised function ft0 . The knowledge provided by
the equations of motion is unaltered,

p(R(t1)
z |M(t1) ∧ R(t0)

z0 ∧ M(t0) ∧ I) dz = δ[z − Ut0,t1 (z0)] dz. (III.5)r

To derive our a posteriori knowledge, i.e. the answer to the question ‘if we perform a
measurement M(t1) at time t1, with which plausibility can be obtain a result around R(t1)

z ?’,
we really need this time the rules of plausibility theory:

p(R(t1)
z |M(t1) ∧Cu ∧ I) dz =∫

Γ

p(R(t1)
z |M(t1) ∧ R(t0)

z′ ∧ M(t0) ∧Cu ∧ I) p(R(t0)
z′ |M(t0) ∧Cu ∧ I) dz′ dz =

∫

Γ

δ[z − Ut0,t1 (z′)] ft0 (z′) dz′ dz = ft0 [U−1
t0,t1 (z)]

∥∥∥∥∥
∂U−1

t0,t1

∂z

∥∥∥∥∥ dz. (III.8)

That is, defining ft1 (z) dz B p(R(t1)
z |M(t1) ∧ Cu ∧ I) dz, our final knowledge is simply ex-

pressed by the plausibility distribution

p(R(t1)
z |M(t1) ∧Cu ∧ I) dz = p

[
R(t0)

U−1
t0 ,t1

(z)

∣∣∣ M(t0) ∧Cu ∧ I
] ∥∥∥∥∥

∂U−1
t0,t1

∂z

∥∥∥∥∥ dz, or

ft1 (z) dz = ft0 [U−1
t0,t1 (z)]

∥∥∥∥∥
∂U−1

t0,t1

∂z

∥∥∥∥∥ dz.

(III.9)

We recognise in this equation the most general form of Liouville’s equation, which in terms
of the vector field v previously introduced is equivalent to the more common form

∂t ft(z) = −∇z · [v(z, t) ft(z)] (III.10)

[cf. 19, 20, 223, 224, 282, 475, 587, 611, 612, 717].
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Formula (III.9) represents the answer to our question for a particular time t1; but can
also be interpreted as a set of answers for different such times t1. It is in a sense somehow
redundant; for instead of asking, for each t, ‘What is the plausibility of obtaining the out-
come R(t)

z ?’, we can directly ask: ‘What is the plausibility of a particular phase trajectory?’.
Denoting: a trajectory by ζ : t 7→ z = ζ (t), the ‘measurement’ of the trajectory (i.e., of the
history of the system) by M, and the outcome consisting in a particular trajectory ζ by Rζ ,
the answer to our question above is

‘ p(Rζ |M ∧Cu ∧ I) dζ = δ[ζ − Ut0,·(z0)] ft0 (z0) dζ ’, (III.11)

which I have put within quotation marks since it requires analytical and topological care.
The measure p(. . . ) dζ (as well as the delta) is in fact defined over a trajectory space, i.e.,
integrations in respect of this measure are path integrals.

It would seem that there is no much difference between the two questions above, the one
about individual times and the one about trajectories. And indeed conceptually there is not.
Yet, after the grounding work of Boltzmann, Maxwell, and Gibbs, it took so long time for
statistical mechanics to proficuously attack non-equilibrium processes precisely because
the point of view and the question asked had always been restricted to the possible phase
coordinates of the system, instead of the possible motions of the system, — an approach
that is clearly untenable as soon as the relation between trajectories and phase points at
a given time ceases to be bijective. Today, especially after the work of Jaynes, statistical
mechanics is based on ‘ensembles’ (plausibility distributions) defined not in phase space,
but in path space. Much could be said on this extremely interesting subject; unfortunately,
for reasons of space and time, I can only refer to the work of Jaynes [376, 379, 381, 385]
and many others’ like Mori, McLennan, Lewis, Zwanzig, Hobson, Robertson, Zubarev
and Kalashnikov, Grandy, Baker-Jarvis, Gallavotti, Maes, Dewar, et multi alii [27–30, 32,
34, 142, 161, 167–169, 174, 175, 184, 196, 220, 255, 256, 265, 285, 287–289, 344–
346, 369, 395, 459, 469, 470, 496–500, 515–517, 531, 535, 572, 616–618, 620–622, 637,
639, 664, 690, 730, 757, 760–762].

21. Before continuing, I should like to offer a remark concerning locutions like ‘tem-
poral evolution of the plausibility distribution’ or ‘the equation of motion of the plausibil-
ity distribution’ so often used in statistical mechanics. Our a priori knowledge (Cu ∧ I in
the above equations) is always the same; and the plausibility distributions simply concern
questions that regard different times. These plausibilities are assigned as soon as we per-
form the calculations, and as soon as these are done our knowledge and our plausibilities
do not change a iota, independently of how long the system has evolved. Thus saying that
the plausibility ‘evolves in time’ is somehow inappropriate and misleading. An example
may perhaps illustrate what I mean: If we now read and learn a timetable for a local bus,
we know where the bus stops at particular times; but we know it all now — we do not
acquire that knowledge ‘along the bus’ trip’. We know now that the buss will stop at Baker
Street at 12 o’clock, we are not ‘going to know it’ at 12 o’clock. Our knowledge is not
‘evolving’. The sentence that ‘the plausibility evolves in time’ conceals a conception of
plausibility as a sort of physical thing — which it is not. The same remark also holds
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for ‘wave-functions’ and other mathematical objects whose rôle is only that of encoding
plausibilities (see ch. III).

Three special kinds of propositions. Definition of ‘system’. Insights

22. The derivation of the general mathematical setting for statistical mechanics given
in § 20 is not the one commonly found in textbooks, even though its imports are roughly
the same. It was as near as possible to the point of view of plausibility logic, and the
notation introduced there will be further used in the following discussion.

Let us now proceed to the construction of a logico-mathematical framework which
make allowance for the characterisation, given in § 18, of a physical theory. I introduce
three kinds of propositions to be used in the plausibilistic description of a physical theory
or model. They will generally be denoted by the symbols S̄ , M, and R. The propositions
S̄ will be called states or preparations, and will be meant to express part of our a priori
knowledge. The propositions M will be called measurements, and will represent additional
a priori knowledge. Finally, the propositions R will be called outcomes and will represent
those details about which we have some a posteriori knowledge. The difference between
the ‘S̄ -’ and ‘M-propositions’ is that the latter delimit the scope of the a posteriori know-
ledge required; so to speak, they define and confine the particular ‘question’ we are asking.
The propositions R are the possible ‘answers’ to such questions.

When a given ‘system’ is considered, the set of possible states and the sets of possible
measurements and outcomes are automatically circumscribed. Here I want to take the
opposite point of view, which is much more profitable:

Definition 2. A set of states {S̄ j} and a set of measurements {Mk}with the relative outcomes
{Ri} together define the physical ‘system’ under study.

(Cf. Bridgman’s ‘universe of operations’ [85].) This definition is profitable for at least
two reasons. One is that some people sometimes indicate a system by indicating a body
or collection of bodies, or sometimes a region of space. But a body (or a space region)
may be studied in many different ways, and can correspond to different systems, depending
on whether we are interested in its mechanical, or thermodynamical, or electromagnetic,
etc., properties (cf.Jaynes [375, § 1.2]) — we cannot be interested in all of its properties
at once (and moreover it can possess properties that have not yet been discovered). The
other reason is that the laws governing a system are meaningful and correct only in respect
of given sets of quantities, variables, and processes. If these sets are altered the laws
may become meaningless or incorrect. There are at least three illustrious examples of
discussions (which have now become tedious) about ‘paradoxes’ that originated simply
because of carelessness in defining the system and in inspecting whether certain laws were
really meant to apply to that kind of system:

• The ‘Gibbs paradox’ [266, pp. 166–167],7 one version of which being that the en-
tropy of mixing of two gases varies discontinuously as the gases gets chemically

7Gibbs did not use the word ‘paradox’.
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‘more similar’ and eventually identical.8 The point missed by the enthusiasts of this
version of the ‘paradox’ is that the system they consider provides for no such pro-
cess of chemical change, so their very formulation of the ‘paradox’ is meaningless.
In a system — a different system — which made allowance for such a process, there
would then also be an additional related parameter; the entropy function and the en-
tropy of mixing would depend on it and would therefore have different expressions
(there would be a sort of entropy of convection), would satisfy different balance laws,
and would be governed by different evolution equations. There are in fact thermo-
dynamic theories and systems that describe such processes, with no ‘paradox’; see
e.g. Faria [226, 227].9

• A putative argument by von Neumann [552, § V.2] and Peres [584, § 9-4] stating
that if two non-one-shot-distinguishable states of a quantum system could be distin-
guished in one shot, a violation of the second law could follow. The point missed
here is that, if we consider a given system and say that two of its possible states
cannot be distinguished in one shot, then evidently the system by definition does not
admit measurements or processes that can distinguish those states in one shot. Then
why would we entertain such a non-admitted process? It is clear that logical contra-
dictions then arise; a derivation of ‘physical’ consequences is then only a vacuous
exercise (from contradictory assumptions any proposition can be derived) and has no
physical meaning at all. Admitting such a kind of distinguishing process only means
that you are considering a different system, in which those states are, by definition,
one-shot distinguishable, and for which the entropy function and evolution equations
have different forms. Analyses of von Neumann’s and Peres’ inconsistent argument,
from partially different points of view, have been given in Paper (B) and Paper (E).
In a paper in preparation I also show that von Neumann’s and Peres’ putative argu-
ment is valid for classical mechanics as well; hence the discussion is not peculiar to
quantum mechanics.

• ‘Maxwell’s demon’ [512, pp. 338–339; 693]. In this case one imagines having an
envelope with two samples, A and B, of a gas at the same temperature and separated
by a diaphragm. In the diagram there is a small hole and ‘a being, who can see the
individual molecules, opens and closes this hole, so as to allow only the swifter
molecules to pass from A to B, and only the slower ones to pass from B to A.
He will thus, without expenditure of work, raise the temperature of B and lower
that of A, in contradiction to the second law of thermodynamics’ [512, ibid.]. The
amount of discussion about this observation has been enormous, even with volumes

8This is only one of the versions in which this ‘paradox’ is formulated. The versions are sometimes presented
as equivalent but are in fact different — which contributes to the confusion.

9In all versions of this ‘paradox’ (see preceding footnote) it has been shown that (a) there is no paradox,
but only confusion and carelessness in formulating the argument; (b) quantum mechanics has nothing to do
with the ‘resolution’ of the ‘paradox’. See the analyses by Gibbs himself [266, p. 166], Larmor [456, § 59],
Schrödinger [640], Bridgman [85, pp. 168–169], Grad [284], Boyer [75], van Kampen [413], Jaynes [390], who
have to a greater or lesser degree clarified one or another version of the ‘paradox’ (though sometimes at the
detriment of the clarity of other versions). See also [173, 188, 286, 435, 585].
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specially dedicated to it; a very small sample being [64, 86, 87, 95, 119, 123, 182,
183, 418, 436, 564, 575, 588, 630, 659, 662, 694, 756]; cf. also the references
for ‘Gibbs’ paradox’ above. Amongst these discussions, I find Earman and Norton’s
[182, 183] the most lucid. But the simple point here is again that the system for which
the second law is stated (which is characterised by measurements of the volumes,
temperatures, and pressures of the two gas samples) does not admit any observations
of individual molecules. If such kinds of measurement are allowed, we have then
a different system, for which the entropy and heat functions either have different
expressions and therefore satisfy a different form of the second law, or are not defined
at all. I think this is the point made by Maxwell himself immediately after stating
his example [512, p. 339]:

This is only one of the instances in which conclusions which we have
drawn from our experience of bodies consisting of an immense number
of molecules may be found not to be applicable to the more delicate ob-
servations and experiments which we may suppose made by one who can
perceive and handle the individual molecules which we deal with only in
large masses.

I.e., different sets of measurements (‘more delicate observations and experiments’)
define different systems — even if these systems concern the same physical body —,
and different systems may satisfy different laws (‘conclusions . . . may be found not
to be applicable’).

23. The propositions representing states, measurements, and outcomes introduced in
the previous section are required to satisfy some properties which reflect some character-
istics of those notions. All these properties can be stated in terms of plausibilities:

(I) The states are mutually exclusive and, in the majority of problems, also exhaustive:

P(S̄ j′ ∧ S̄ j′′ | I) = 0 if j′ , j′′, (III.12a)
P
(∨

j
S̄ j| I) =

∑
j

P(S̄ j| I) = 1. (III.12b)

Note that the plausibilities of each state are unspecified, of course.

(II) Also the measurements are mutually exclusive and, in the majority of problems,
exhaustive as well:

P(Mk′ ∧ Mk′′ | I) = 0 if k′ , k′′, (III.13a)
P
(∨

k
Mk | I) =

∑
k

P(Mk | I) = 1. (III.13b)

Also in this case the plausibilities of each measurement are not specified.
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(III) To each measurement Mk is associated a unique set of outcomes {Ri | i ∈ Λk} which
are, given the measurement, mutually exclusive and exhaustive:

P(Ri′ ∧ Ri′′ |Mk ∧ I) = 0 if i′ , i′′, (III.14a)
P
(∨

i
Ri|Mk ∧ I

)
=

∑
i

P(Ri|Mk ∧ I) = 1, (III.14b)

As already appears from these equations, we shall usually omit to indicate to which
measurement a particular outcome Ri belongs (which would be otherwise indicated
by ‘i ∈ Λk’), since it is usually clear which is the measurement intended.

Requirement (I) expresses the fact that we can prepare (or select) a system in a certain
way or in another, but not in both. You perhaps would argue against this requirement as
follows: ‘I can prepare, say, a rigid body so that it has a given position x (preparation S̄ 1),
or so that it has a given moment of momentum L (preparation S̄ 2); but also in both ways,
so that it has position x and moment of momentum L′ (preparation S̄ 1 ∧ S̄ 2) . But if you
rephrase your statement more carefully you see that it is not true. Ask yourself: in the
preparation S̄ 2, what is the position? Either it has some value x′, or it is unknown. If it is
unknown, you cannot have both S̄ 2 and S̄ 1, since in the latter the position is known, and it
cannot, of course, be both unknown and known. If it is known to be x′, then you can have
both preparations only if (1) the moment of momentum in S̄ 1 is also known, say with value
L′, and (2) x = x′ and L = L′. But this means that S̄ 1 and S̄ 2 are the same preparation,
and then S̄ 1 ≡ S̄ 2 ≡ S̄ 1 ∧ S̄ 2.

Requirement (II) expresses the fact that we can perform a particular measurement, or
another one, but not both, in analogy with the requirement for the states. Against the
present requirement, though, reasonable arguments can be levelled. For we can imagine
e.g. a measurement M1 with three outcomes, and then another measurement M2 which is
identical to the first but for the fact that two of the outcomes are ‘grouped together’ and
considered as one — more precisely, we take their disjunction. The measurement M2 is
called a ‘coarsening’ of M1 (cf. [333] and see § 24). What is in this case the status of
the conjunction M1 ∧ M2? The formal position I assume here is that the specification
of a measurement includes also a ‘description’ of the possible outcomes, including their
number. So in our example the conjunction M1 ∧ M2 is impossible, because we can either
perform a measurement with three outcomes, or one with two, but not both. This is only
one choice, but I have noticed that it has many advantages.

You have noticed that the requirement (III.14) for the outcomes is conditional on some
measurement. It seems best not to fix any particular requirements when a measurement is
not given. For example, in some situations one can require all outcomes, from all meas-
urements, to be mutually exclusive,

P(Ri′ ∧ Ri′′ | I) = 0 if i′ , i′′;

whilst in other situations it can be convenient to conceive that an outcome can belong
to more than one measurement: i ∈ Λk′ and i ∈ Λk′′ with k′ , k′′ (or more simply,
Λk′ ∩ Λk′′ , ∅). Such is the case, e.g., when a measurement can be considered as a
coarsening of another one, in the sense explained above.
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In any case it is always best to state precisely which measurement one is speaking
about. This point may seem so obvious as to be trivial. And yet, very many discussions
and statements about quantum mechanics and plausibility theory reveal that it is — still
today — not clear at all. Cf. the discussion on the double-slit experiment of § 16.

Introducing the vectors

24. As already said, the propositions {S̄ j} are meant to represent the possible a priori
data about a given system, and the propositions {Mk} the possible ‘questions’ we can ask,
the propositions {Ri} being the possible ‘answers’. It is clear then that the theory (whose
content and ‘laws’ we assume included in the proposition I) that concerns the system must
allow us to assign the plausibilities

P(Ri|Mk ∧ S̄ j ∧ I) for all j, k, and i ∈ Λk. (III.15)

In other words, if we specify the initial data and ‘ask a (sensible) question’ the theory must
allow us to assign plausibilities to the possible ‘answers’.

The theory thus provides us with a sort of table like the following:

S̄ 1 S̄ 2 S̄ 3 S̄ 4 . . . S̄ σ

M1
R1

R2

p11

p21

p12

p22

p13

p23

p14

p24

. . .

. . .

p1σ

p2σ

M2

R3

R4

R5

p31

p41

p51

p32

p42

p52

p33

p43

p53

p34

p44

p54

. . .

. . .

. . .

p3σ

p4σ

p5σ

. . . . . . . . . . . . . . . . . . . . . . . .

Mµ

Rρ−2

Rρ−1

Rρ

pρ−2,1

pρ−1,1

pρ ,1

pρ−2,2

pρ−1,2

pρ ,2

pρ−2,3

pρ−1,3

pρ ,3

pρ−2,4

pρ−1,4

pρ ,4

. . .

. . .

. . .

pρ−2,σ

pρ−1,σ

pρ ,σ

(III.16)

where pi j B P(Ri|Mk ∧ S̄ j ∧ I), and it has been assumed that the sets {S̄ j : j = 1, . . . ,σ},
{Mk : k = 1, . . . ,µ}, and {Ri : i = 1, . . . , ρ} are finite, and (only as an example) measurement
M1 has two outcomes Ri with i ∈ Λ1 B {1, 2}, measurement M2 has three outcomes with
Λ2 B {3, 4, 5}, etc.

The table corresponds to a matrix (pi j). The idea now is to associate some kind of
mathematical objects to the propositions S̄ j and to the pairs of propositions Ri, Mk with i ∈
Λk in such a way that, when we ask ‘if I specify the preparation S̄ i and ask the “question”
Mk, what is the plausibility that the theory assigns to obtaining the “answer” Ri (i ∈ Λk)?’,
we can obtain that plausibility by appropriately combining those mathematical objects. In
communication-theoretical jargon, we want to encode the plausibilities (pi j) into pairs of
mathematical objects. This idea is quite easy to realise: it turns out that those mathematical
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objects are just real-valued vectors, and that the way to combine them is to take their scalar
product. I.e., we make the associations

S̄ j 7→ s j, (III.17)
Ri 7→ ri with i ∈ Λk for some Mk, (III.18)

in such a way that

P(Ri|Mk ∧ S̄ j ∧ I) ≡ pi j = ri
Ts j, (III.19)

where I write the scalar product ri · s j as the matrix product between the transpose ri
T of the

column vector ri and the column vector s j. It is important to note that the mappings (III.17)
and (III.18) are generally not bijective, although they are surjective by construction. The
vectors s j and ri are called ‘preparation vectors’ and ‘outcome vectors’ respectively; col-
lectively, we call them ‘proposition vectors’. With regard to the measurements Mk, we
simply associate to them the corresponding sets of outcome vectors:

Mk 7→ mk B {ri | i ∈ Λk}. (III.20)

The explicit construction of this vector representation is given in Papers (C) and (D)
together with examples, a general discussion, applications, and uncommented historical
references. I shall not present the construction and the discussion again here, but rather
assume that the main points of those papers be known (i.e., this is a good point to read those
papers). I should like, however, to present some additional, partly historical, remarks.

In the following, the vectors associated to generic propositions S̄ x, S̄ ′, Ry, and similar
will be denoted by sx, s′, ry, etc. in an obvious way.

Structures of the vector sets and connexion with plausibilistic
reasoning in physics

25. To the sets of propositions {S̄ j} and {Ri} are associated the sets of vectors {s j} and
{ri}, and to the set of propositions {Mk} is associated the set of sets of vectors

{{ri | i ∈
Λk}}k. As the various propositions generally concern some physical quantities (e.g., phase
coordinates etc.), it is important to distinguish carefully between

1. the set or space of physical quantities,

2. the set of related propositions,

3. the set of proposition vectors.

These sets have in general different mathematical, logical, and geometrical structures.
To the structures of the sets of propositions and proposition vectors we turn now our

attention. The analysis of their structures is particularly important because it is very in-
timately connected to the plausibilistic reasoning we make in our theory — e.g., with
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questions like ‘state assignment’ (or ‘reconstruction’ or ‘retrodiction’ or ‘estimation’) and
‘measurement assignment’.

Remember once more that the ‘preparations’, ‘measurements’, and ‘outcomes’ — i.e.
the propositions S̄ j etc. — concern actual or hypothetical facts, often stated in terms of
physical quantities. Consider the following situations as regards these facts:

Preparation ‘mixing’: In a given circumstance we may find ourselves in a condition of
uncertainty C between two (or more) preparations S̄ ′, S̄ ′′. This is quantitatively expressed
by a plausibility distribution

P(S̄ ′|C ∧ I) = α ′, P(S̄ ′′|C ∧ I) = α ′′,

with P(S̄ ′ ∨ S̄ ′′|C ∧ I) = α ′ + α ′′ = 1.
(III.21)

Given a measurement Mk, what is the plausibility distribution that we assign to its out-
comes {Ri} in such a circumstance? From the rules of plausibility logic, more precisely
from the theorem on total plausibility,

P(Ri|Mk ∧C ∧ I) = P(Ri|Mk ∧ S̄ ′ ∧ I) P(S̄ ′|C ∧ I) +

P(Ri|Mk ∧ S̄ ′′ ∧ I) P(S̄ ′′|C ∧ I),

= ri
Ts′ α ′ + ri

Ts′′ α ′′ ≡ ri
T(α ′s′ + α ′′s′′),

(III.22)

where we have made the assumption that C becomes irrelevant if S̄ ′ or S̄ ′′ is known,10 used
eq. (III.21), and introduced the vectors associated to the various propositions. The numer-
ical value of the plausibility conditional on C is a weighted average of the plausibilities
conditional on S̄ ′ and S̄ ′′.

The last line of the preceding equation shows that we can associate the vector

x B P(S̄ ′|C ∧ I) s′ + P(S̄ ′′|C ∧ I) s′′ ≡ α ′ s′ + α ′′ s′′ (III.23)

to the proposition C. This vector is a convex combination of the vectors associated to S̄ ′

and S̄ ′′. All these results are straightforwardly generalised to conditions of uncertainty
concerning more than two preparations. A condition of uncertainty between two or more
preparations is often called a ‘mixture’ of those preparations. In the following, we shall
call propositions like C circumstances, as we did in the Laplace-Jaynes approach to induc-
tion; this is not a confounding nomenclature, since we shall see that the ‘circumstances’
of the Laplace-Jaynes approach and the ones introduced here are basically the same no-
tion. When we want to be more specific, we may call those here presented ‘preparation
circumstances’.11 Their associated vectors, like x, will be called ‘circumstance vectors’.

There is a natural relation of equivalence amongst different circumstances, and amongst
circumstances and preparations themselves:

10I.e., P(Ri |Mk ∧ S̄ ′ ∧C ∧ I) = P(Ri |Mk ∧ S̄ ′ ∧ I), and analogously with S̄ ′′.
11I know that the terms ‘(preparation) circumstance’ and ‘measurement circumstance’, introduced infra, are

ugly and liable to be confused with their non-technical homonyms. But I have not found better alternatives yet
(cf. footnote 4).
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Definition 3. Two preparation circumstances C′, C′′ are said to be equivalent if they lead
to identical plausibility distribution for each measurement Mk; or, equivalently,12 if their
associated vectors are identical:

C′ ∼ C′′ ⇐⇒ P(Ri|Mk ∧C′ ∧ I) = P(Ri|Mk ∧C′′ ∧ I) for all k and i ∈ Λk,

⇐⇒ x′ = x′′.
(III.24)

Analogously, one can speak of the equivalence of a circumstance and a preparation, or of
two preparations.

It must be remarked that this equivalence relation is heavily dependent on the specifica-
tion of the measurement and outcome sets. Adding or subtracting a measurement to or from
the set {Mk}— and thus considering a different system, cf. § 22 — may render two previ-
ously equivalent circumstances inequivalent or vice versa. Thus the equivalence is not an
‘intrinsic’ property of the preparations, or related to the characteristics of the preparations
alone.

Unfortunately the above remark is very often forgotten in quantum mechanics. There,
also, two ‘preparation procedures’ can be ‘indistinguishable’, in which case they are rep-
resented by the same density matrix.13 But this indistinguishability is only relative to some
set of measurements, not ‘intrinsic’ to the procedures. (After all, if we are speaking of two
procedures it is because we can distinguish them somehow.) Also the statement that the
two procedures lead to the ‘same state’ must be qualified relatively to some measurement
set. It may well happen that a new measurement be found that distinguishes ‘states’ that
were previously thought to be the ‘same state’: just think about the discovery of isotopes.
Statements asserting that ‘two states are indistinguishable in principle’ or something of the
kind (and such statements abound in quantum mechanics), are simply vacuous, untestable,
and usually of limited historical duration.

Measurement ‘mixing’: In another circumstance a condition of uncertainty W may
regard two (or more) measurements M′, M′′:

P(M′|W ∧ I) = β ′, P(M′′|W ∧ I) = β ′′,

with P(M′ ∨ M′′|W ∧ I) = β ′ + β ′′ = 1.
(III.25)

In this circumstance W we can expect an outcome of M′ or M′′, so that the set of possible
outcomes is the union of the outcomes of the two, Ri with i ∈ Λ ′∪Λ ′′. Given a preparation
S̄ j, the plausibility distribution over this set of outcomes in this circumstance is, from the
theorem on total plausibility and eq. (III.25),

P(Ri|W ∧ S̄ j ∧ I) = P(Ri|M′ ∧ S̄ j ∧ I) P(M′|W ∧ I) +

P(Ri|M′′ ∧ S̄ j ∧ I) P(M′′|W ∧ I),

=


β ′ ri

Ts j if i ∈ Λ ′,

β ′′ ri
Ts j if i ∈ Λ ′′,

(III.26)

12Since ri
Tx′ = ri

Tx′′ for a complete set of linearly independent ri.
13As explained in Papers (C) and (D), density matrices constitute only a different representation of the pre-

paration vectors of quantum-mechanical systems.



§25. 39

where the assumption has been made that W becomes irrelevant if M′ or M′′ is known.14

A condition of uncertainty between two or more measurements is often called a ‘mix-
ture’ of those measurements. In the following we shall call propositions like W measure-
ment circumstances. (Cf. also Holevo [350].)

Coarsening: There are also circumstances in which the outcomes {Ri | i ∈ Θ } of one
or more measurements Mk, with Λk ⊆ Θ , cannot be observed; but we can observe other
‘events’ described by mutually exclusive and exhaustive propositions {Eı̄}, and we have
(e.g., from some theory) some plausibilities for the latter given the former:

P(Eı̄|Ri ∧ I) = Qı̄i,

with
∑
ı̄

Qı̄i = P
(∨
ı̄

Eı̄|RiI
)

= 1. (III.27)

The last line implies that the matrix Q ≡ (Qı̄i) is a stochastic matrix [601] (see also [13,
58, 145, 508]). The plausibility for one of the ‘events’ {Eı̄}, given a measurement Mk such
that Λk ⊆ Θ and a preparation S̄ j, is then obtained by marginalisation over the outcomes
{Ri | i ∈ Λk}:

P(Eı̄|Mk ∧ S̄ j ∧ I) =
∑

i∈Λk

P(Eı̄|Ri ∧ I) P(Ri|Mk ∧ S̄ j ∧ I),

=
∑

i∈Λk

Qı̄iri
Ts j,

(III.28)

where we assume that the Mk are irrelevant if the Ri are known.
A set of such ‘events’ is often called a ‘coarsening’ of the outcome set {Ri | i ∈ Λk}; in

fact, from now on we shall call the propositions Eı̄ ‘coarsened outcomes’, or even simply
‘outcomes’, instead of ‘events’. (Cf. also Holevo [350].) A simple example of coarsening
is the disjunction of two outcomes in a set of three: {E1, E2} B {R1 ∨ R2,R3}. In this case
the stochastic matrix will contain the submatrix


Q11 Q12 Q13

Q21 Q22 Q23

 =


1 1 0
0 0 1

 . (III.29)

It is quite natural to consider and combine a measurement circumstance together with a
set of coarsened outcomes, which manifest a condition of uncertainty about the outcomes
of those measurements. Denote this ‘combined’ measurement circumstance also by W.
We can have e.g. a measurement circumstance W regarding some measurements Mk with
plausibility distribution {βk}, and also a coarsening {Eı̄} of their sets of outcomes with
stochastic matrix (Qı̄i), i ∈ ⋃

k Λk. The plausibility for the coarsened outcome Eı̄, con-
ditional on W and on a preparation S̄ j, is then (with the assumptions already discussed)
given by

P(Eı̄|W ∧ S̄ j ∧ I) =
∑

k,i∈Λk

P(Eı̄|Ri ∧ I) P(Mk |W ∧ I) P(Ri|Mk ∧ S̄ j ∧ I),

=
∑

k,i∈Λk

Qı̄i βk ri
Ts j.

(III.30)

14I.e., P(Ri |M′ ∧W ∧ S̄ j ∧ I) = P(Ri |M′ ∧ S̄ j ∧ I), and analogously with M′′.
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To this measurement circumstance W we can therefore associate the set of vectors

m̄ B {r̄ı̄}, with

r̄ı̄ B
∑

k,i∈Λk

P(Eı̄|Ri ∧ I) P(Mk |W ∧ I) ri,≡ ∑
k,i∈Λk

Qı̄i βk ri.
(III.31)

In analogy with the preparation circumstances, there is also a natural equivalence re-
lation amongst ‘combined’ (in the sense above) measurement circumstances, as well as
amongst these and the measurements themselves:

Definition 4. Two measurement circumstances W ′ and W ′′, with coarsened outcomes {E′ı̄ }
and {E′′ı̄ } having the same cardinality, are said to be equivalent if they lead to identical
plausibility distribution for each preparation S̄ j; or, equivalently,15 if their associated vec-
tor sets are identical:

W′ ∼ W′′ ⇐⇒ {P(E′ı̄ |W′ ∧ S̄ j ∧ I)} = {P(E′′ı̄ |W ′′ ∧ S̄ j ∧ I)} for all j,

⇐⇒ m̄′ = m̄′′.
(III.32)

Analogously, one can speak of the equivalence of a measurement circumstance and a meas-
urement, or of two measurements.

Note that the equivalence regards the plausibility distributions only: the sets of out-
comes of the equivalent measurement circumstances may be from a physical point of view
completely different. As in the case of the equivalence relation (III.24), also in this case it
must be remarked that the present equivalence relation is dependent on the specification of
the set of preparations. Any alteration to the set {S̄ i}— which alteration implies a change
of system, cf. § 22 — may render two measurement circumstances, which were previously
equivalent, inequivalent; or vice versa.

26. Preparations S̄ , measurements M, and outcomes R on one side, and circumstances
C, W, and coarsened outcomes E on the other, live on different logical planes. The former
are nearer to the notions, the concepts, and the primitives of the theory than the latter.
The latter represents different kinds of states of knowledge we can have on those notions,
concepts, and primitives. It is for this reason that when we study a physical system from
a plausibilistic point of view, it is natural to shift from the sets {S̄ j}, {Mk}, {Ri}, to the sets
of propositions like C, W, and E. This shift also has some mathematical consequences and
advantages.

We can imagine all possible kinds of circumstances C. Mathematically this means
that in eqs. (III.21) and (III.23) we can entertain all possible plausibility distributions {α j}.
The associated vectors x evidently form a convex set, viz. the convex hull [14, 89, 297,
518, 625, 723] conv{s j} of the set of preparation vectors. Note that the correspondence
between circumstances and their vectors is not injective: as eq. (III.24) shows, equivalent
circumstances have the same vector. Each equivalence class is then uniquely characterised

15See footnote 12.
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by a vector x; membership of a circumstance C j to such equivalence class will be denoted
by j ∈ x∼. From the same equation it also follows, by the rules of plausibility theory, that

P
[
Ri|Mk ∧ ( ∨

j∈x∼
C j

) ∧ I
]

= P(Ri|Mk ∧C j ∧ I) for all j ∈ x∼,

= ri
Tx.

(III.33)

Hence the same vector x can also be associated to the disjunction of all equivalent circum-
stances — which is itself but another ‘circumstance’.

It is therefore natural to consider the set of such disjunctions instead of the original
set, since the members of each disjunction are for us the same for the purpose of assign-
ing plausibilities to measurement outcomes. (This point is made more precise in § 39; cf.
eq. (IV.5).) From the above equations it follows that this disjunction is uniquely character-
ised by such a vector, which can therefore be used as a unique index:

S x B
∨

j∈x∼
C j. (III.34)

Such disjunctions will be called ‘x-indexed circumstances’, or more generically ‘plausibility-
indexed circumstances’, in analogy with the Laplace-Jaynes approach (remember in fact
that the rôle of the vector x is to partly encode the plausibilities P(R j|Mk ∧ S x ∧ I)). Since
the vectors x belong to a convex space, the set {S x} is continuous. For a more careful
discussion of this point, see Paper (F), § 4, and Paper (G), § 5.3.

In a similar way can we imagine all possible kinds of measurement circumstances W;
and the set of imaginable coarsened outcomes contains at least all possible disjunctions of
outcomes Ri. Mathematically this means that in eqs. (III.25), (III.27), and (III.31) we can
entertain all possible plausibility distributions {βk} and at least those stochastic matrices
(Qı̄i) that have noughts or ones as elements. The associated vectors r̄ can then be shown
to form a convex set as well, the convex hull conv{ri} of the set of outcome vectors. In
fact, there is more than only a convex structure: this set is a double cone, as discussed in
Paper (C), § III.C; cf. also the references given infra in § 37. The set of sets m̄ associated
to uncertainty conditions on measurements has an even more complex structure, possibly
with a partial order (cf. [13, 70, 145, 508, 536]).

Measurement circumstances can also be grouped together into disjunctions of equival-
ent ones, according to the equivalence relation (III.32). The process is analogous to that
for preparation circumstances. I shall not take this step, however; for preparations and
measurements have different offices, and it is not yet clear to me whether a ‘plausibility-
indexing’ of measurement circumstances and outcomes is as useful as for preparation cir-
cumstances.

The vector framework in classical point mechanics

27. Up to now the discussion has been conducted on an abstract and general plane. But
it is simple to apply the framework to concrete cases. A simple example concerning a toy
system is given in § 2.1 of Paper (D). Here I want briefly present quite natural applications
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to systems of classical point mechanics and quantum mechanics;16 but note that they are
not the only possible ones.

With ‘a system of classical point mechanics’ I intend here specifically a closed17 system
specified by some phase coordinates z, like the positions and momenta of a collection of
particles, and by a set of measurements which can pertain e.g. the position coordinates,
or energy, or other quantities like the intensity of the total electric field at a given point,
et similia. The measurements may more generally depend on external parameters, and
these may be unknown (for a simple example see Peres [583]), so that we have plausibility
distributions for their outcomes. An evolution operator which may be time-dependent, or
less generally a Hamiltonian (usually corresponding to the energy) or a Lagrangian is also
given, but it will not interest us here.

If we fix a time instant t0, it is natural to introduce a (continuous) set of states S̄ z, each
stating that the system has been prepared or selected, at that instant, with particular phase
coordinates z. Amongst the measurements considered for this kind of systems the basic
one is that yielding the phase coordinates themselves; we denote it by Mph. Its outcomes
Rz are the various phase-coordinate values, and the theory tells us that

p(Rz|Mph ∧ S z′ ∧ Ic) dz = δ(z − z′) dz, (III.35)

whose meaning I think needs no explanation. Another almost universally considered meas-
urement concerns the energy h, and we denote it by Men

ω . In the case of a closed system the
energy value is determined by the phase coordinates z, and by other possible parameters
as well as the time, which I denote collectively by ω:

h = H(z,ω). (III.36)

If ω is known and fixed the plausibility of obtaining the outcome h is given by

p(Rh|Men
ω ∧ S z′ ∧ Ic) dh = δ[h − H(z′,ω)] dh. (III.37)

Analogous considerations holds for other kinds of measurements.
The plausibilities in the equations above are those ‘given by the theory’, and are more

concrete examples of the generic ones of eq. (III.15). Although, as already said, we have
an uncountable infinity of states, we may roughly imagine how the construction of a plau-
sibility table like (III.16) could proceed, as well as the derivation of the proposition vectors
as in Papers (C) and (D). The various vectors are in this case infinite-dimensional and
are realised as generalised functions18 over an appropriate space, their scalar product be-
ing realised as the integral of the product of those generalised functions. The following

16The first case requires some mathematical care since the resulting convex spaces are not finite-dimensional;
but for the general presentation given here I think that no particular mathematical (topological) comments are
necessary.

17In the thermodynamical meaning of the term.
18Or rather, measures.
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associations hold in particular:

S̄ z′ is represented by sz′ B [ ẑ 7→ δ( ẑ − z′)], (III.38)
Rz′ is represented by rz′ B [ ẑ 7→ δ( ẑ − z′) dz′], (III.39)
Rh is represented by rh B { ẑ 7→ δ[h − H( ẑ,ω)] dh}, (III.40)

in such a way that

p(Rz′′ |Mph ∧ S̄ z′ ∧ Ic) dz′′ = rz′′
Tsz′ ≡

[∫
δ( ẑ − z′′) δ( ẑ − z′) d ẑ

]
dz′′, (III.41)

p(Rh|Men
ω ∧ S̄ z′ ∧ Ic) dh = rh

Tsz′ ≡
{∫

δ[h − H( ẑ,ω)] δ( ẑ − z′) d ẑ
}

dh, (III.42)

etc. We clearly recover eqs. (III.35) and (III.37).
Note that, although there is a bijective correspondence between phase coordinates z

and the preparation-vectors sz of the corresponding propositions S z, the two mathematical
objects live in two different spaces, with different relevant properties. In the space of the z
there may be a linear structure (e.g., when the z are positions and momenta), a symplectic
one, etc. In the space of the sz the relevant structure is the convex one, and it turns out that
this space consists in the extreme points of a simplex.19 From this property many other
well-known properties follow, e.g. the fact that all states are distinguishable in one shot,
and that every measurement is equivalent to some coarsening of Mph.

28. In the particular application of the vector framework to classical point mechanics
described in the previous section, a preparation circumstance C represents a state of uncer-
tainty regarding the phase coordinates or, better, the propositions S̄ z. Conditional on such
circumstance we have a plausibility distribution

p(S̄ z|C ∧ Ic) dz = f (z) dz, (III.43)

and, according to § 24, eq. (III.23), we can associate to the proposition C the vector (which
is again a generalised function)

x B
∫

p(S̄ z|C ∧ Ic) sz dz =
[
ẑ 7→

∫
f (z) δ( ẑ − z) dz

]
≡ f . (III.44)

It is clear that a circumstance C is what we usually represent by a Liouville function.

29. It is interesting to note that, in the vector framework, Liouville functions can be
seen from two different points of view. From the first, they are plausibility distributions
over the phase coordinates (or better, over the propositions S z); and this is the usual point of
view. From the second point of view, they are just vectors that, when combined with other
vectors, yield a plausibility distribution; from this point of view their normalisation and
positivity properties are not necessary. In fact, the vector representation (III.38)–(III.40)

19Some qualifications would be necessary in this infinite-dimensional case. See e.g. [14, 427–433, 632, 736].
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is only a particular realisation: we could have chosen functions different from deltas. A
simple alternative would be, e.g., the associations

S̄ z′ is represented by sz′ B [ ẑ 7→ −δ( ẑ − z′)], (III.38′)
Rz′ is represented by rz′ B [ ẑ 7→ −δ( ẑ − z′) dz′], (III.39′)

etc.; in this case to the circumstance C would be associated the vector (function) − f , clearly
non-positive. This second point of view is quite useful especially when we compare clas-
sical mechanics with quantum mechanics, since it implies that Liouville functions and,
e.g., Wigner functions or other ‘pseudo-distributions’20 are homologous mathematical ob-
jects, i.e. they play the same rôle within the respective theories; in particular, they are not
plausibility distributions, but only mathematical objects that, combined with others, yield
plausibility distributions.

30. It is perhaps useful to give an example of a measurement circumstance as well.
Consider the energy function z 7→ H(z,ω) and suppose that the value of the parameter ω

is unknown, with a plausibility distribution g(ω) dω . This situation constitutes a measure-
ment circumstance W, conditional on which the measurements Men

ω for different ω have
plausibilities

p(Men
ω |W ∧ Ic) dω = g(ω) dω . (III.45)

Conditional on W and on a state S̄ z, the possible outcomes Rh have a plausibility distribu-
tion

p(Rh|W ∧ S̄ z ∧ Ic) dh =
{∫∫

δ[h − H( ẑ,ω)] δ( ẑ − z) g(ω) d ẑ dω
}

dh (III.46)

and to the outcomes we can associate the vectors

r̄h B
(
ẑ 7→

{∫
δ[h − H( ẑ,ω)] g(ω) dω

}
dh

)
, (III.47)

which formula is but a particular case of eq. (III.31).

The vector framework in quantum mechanics

31. With regard to quantum mechanics, the application of the vector framework is as
straightforward as it was for classical point mechanics. Here I take as example a closed,21

finite-level system. Such a system is characterised by an infinite collection of preparation
circumstances which includes a set of ‘special ones’, indexed by the rays φ of a complex
Hilbert space of given dimension. The physical reasons as to why such a set should be
picked up are still unknown — and also unsought within the main-stream research of trade
science [707]. A collection of measurements is also given which pertain various quantities
such as the components of intrinsic angular momentum, energy, et similia. The collection

20See references in § 31 infra.
21In the thermodynamical meaning of the term.
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of preparations and measurements has the specific feature — whose reason is also unknown
and unsought — that at most K preparations can be distinguished in one shot by some
measurement; the system is therefore called a K-level system. An evolution operator or
less generally a Hamiltonian is usually given as well, but it will not interest us here.

Fixing a time instant t0, one can introduce the set of preparation circumstances {C j}
and the set of measurements {Mk}, each with a set of outcomes {Ri | i ∈ Λk}. If we ima-
gine to specify a plausibility table like (III.16) and to decompose it as usual, we arrive
at sets of circumstance- and outcome-vectors x and ri that have particular convex struc-
tures; in particular, the set of preparation vectors is convex-structurally isomorphic to the
set of positive-definite K-by-K complex Hermitian matrices with unit trace, and the set of
outcome vectors is the largest convex set compatible with the structure of the preparation-
vector set (in the sense of Paper (C), § III.C). These convex structures are quite complic-
ated; an example for a three-level system is shown in Fig. 1 of Paper (H), and others are
available upon request [602].

The circumstance- and outcome-vectors are realised in a variety of ways in quantum-
mechanical studies and applications, depending on the purpose. The most common real-
isation is as particular Hermitian matrices: statistical operators [225] ρ and positive-
operator-valued-measure elements [15, 22, 106–108, 110, 111, 113, 156, 157, 349, 352,
370, 445, 642] Ei, the scalar product corresponding to the trace of the product of these
matrices:22

x =̂ ρ , (III.48a)
ri =̂ Ei, (III.48b)

ri
Tx =̂ tr(Eiρ). (III.48c)

Another realisation very common in quantum optics is as Wigner functions [420, 738] W
or other functions like Husimi’s Q or Glauber and Sudarshan’s P [264, 276–278, 343, 462,
678], defined on a particular parameter space; the scalar product is realised as the integral
of the product of the functions:

x =̂ [y 7→ W(y)], (III.49a)
ri =̂ [y 7→ Vi(y)], (III.49b)

ri
Tx =̂

∫
Vi(y) W(y) dy. (III.49c)

There have been many discussions about the fact that such functions, often called ‘pseudo-
probability distributions’, do not generally have the properties of a plausibility distribu-
tion. But we see that this is in fact not necessary, since their rôle is not that of plausibility
distributions, but of objects that, combined with similar objects, yield plausibility distribu-
tions.23 Put it otherwise, the fact that e.g. a Wigner function may have negative values is no
more troublesome than the fact that a statistical operator has complex entries: for neither
is a plausibility distribution.

22The symbol ‘=̂’ means ‘corresponds to’. Cf. the ISO [362] and ANSI/IEEE [358] standards.
23In some cases the objects to be combined with are sort of ‘identities’, and thus the combination is not

apparent. This is the case e.g. for the Q and P pseudo-distributions.
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I have already mentioned that the sets of circumstance- and outcome-vectors have par-
ticular and complicated convex structures. Some consequent properties are well known.
E.g., the circumstances represented by the extreme points of the preparation-vector set are
not all distinguishable in one shot, as instead is the case for most systems of classical point
mechanics. A noteworthy property of the set of measurements is that not all measurements
can be obtained as coarsenings of a single one, as is the case for most classical systems;
this is related to the ‘construction’ of some measurements by means of Najmark’s the-
orem [see e.g. 12, 347, 349, 352]. For detailed discussions of the convex and related prop-
erties of these sets see e.g. the studies by Holevo [347, 349, 350, 352], Schroeck [642],
Busch, Grabowski, and Lahti [106, 108–111], Beltrametti and Bugajski [56], and refer-
ences therein.

Miscellaneous remarks

32. In the study of some now fashionable topics, like entanglement, cloning, and other
communication-theory related ones, the vector framework appears to me the most appro-
priate since it offers a clear geometric point of view, uncluttered by mathematical objects
and notions — like eigenprojectors, Hermitian conjugates, kets, bras, and other Hilbert-
space paraphernalia — that are not always necessary. This seems to have been noticed in
the literature recently [40–42, 666]. Note, in fact, that the notions of distinguishability,
measurement sharpness, mixing, coarsening, and many other related ones24 are all of a
convex-geometrical nature, and are therefore most easily expressed and studied in convex-
geometrical terms. Note that I am not saying that Hilbert-space concepts are unnecessary;
they are necessary in the sense that the Hilbert-space structure determines the particular
convex one. But when one e.g. wants to localise some points in this convex structure, or
delimit particular regions by hyperplanes, or just choose some basis vectors, there is no
need to invoke, say, SU-group generators and the like. The mathematics introduced in
some works that I have seen in the literature seems more like a sort of exorcising ritual
rather than an efficient mathematical apparatus set-up to achieve a given purpose.

My statement, indeed, is that in quantum mechanics, the only scope of assigning a
Hilbert-space structure is to compactly assign the convex one. And I hope that alternative
ways of assigning the convex structure will be found some day; and that these will have
some understandable physical content.

33. This leads me to another observation. In quantum theory it is the convex structure
of the sets of circumstances and measurements that is given at the start (by postulating
a complex Hilbert-space structure), and from this the plausibilities for the measurement
outcomes, conditional on the circumstances, are derived. This is the opposite of what we
do in classical physics, where instead we give physical laws — which concern notions,
concepts, ideas that are distillations and idealisations of our experience — and based on
these we assign plausibilities, from which the convex structures are finally derived. As

24E.g., the topic of ‘cloning’, which centres around the notion of distinguishability.
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already said, it is still unknown what are the reasons of the particular convex structures of
quantum mechanics, and one of the greatest achievements in natural philosophy will be
to derive them from humanly understandable principles. Until then quantum theory will
only be a very successful black-box theory, a sort of modern Linnaean ‘Systema naturæ
per spatia Hilberti’ of the microscopic fauna and flora. Note that by very nice group
arguments one can derive the standard quantum-mechanical commutator structures, see
e.g. Lévy-Leblond [464] and Holevo [349]; but these derivations assume at the start the
particular, unexplained convex structure of the set of quantum-mechanical states.

Some physicists are of the opinion that quantum theory needs no ‘interpretation’ (e.g.,
Fuchs and Peres [249]; see also the comments on their articles and their reply [677])25.
Well, that depends on what one means by ‘interpretation’. I should say, e.g., that ‘ther-
modynamics needs no interpretation’, since the primitives and the laws of this theory are
distillates and idealisations of our daily experience and concepts. And yet, I would not say
that it is useless to encumber thermodynamics ‘with hidden variables [. . . ] without any im-
provement in its predictive power’; for otherwise I should be condemning the first studies
in statistical mechanics, which added a lot of ‘hidden variables’ (positions and momenta
of microscopic particles) without, at that time, any improvement to thermodynamics’ pre-
dictions.

I also think that the parallel Fuchs and Peres draw with Euclidean geometry misses the
point. They imagine Euclid saying: ‘Geometry is an abstract formalism and all you can de-
mand of it is internal consistency. However, you may seek material objects whose behavior
mimics the theorems of geometry, and that involves interpretation’ [677]. But geometry
was created as an idealisation, systematisation, formalisation of some provinces of exper-
ience, not as an exercise in axiomatics. The primitives of point, straight line, surface, etc.,
and the associated postulates were all introduced to reflect and idealise some facts of ex-
perience. The same is true of the foundations of classical physics [219, 554, 716], based
on primitives like body, distance, motion, force, temperature, and on the postulates that
characterise these. But the primitives of quantum mechanics — eigenprojectors, statistical
operators — which experiential facts do they idealise? I agree with Fuchs and Peres: they
are not meant to idealise facts, they are just parts of ‘an algorithm for computing prob-
abilities for the macroscopic events (“detector clicks”) that are the consequences of our
experimental interventions’ [249]. I.e., again: quantum theory is a black-box theory, not a
proper physical theory.

Appleby [21], citing Bell [55], states the point in a direct way:

This does not mean that I find the Copenhagen interpretation satisfactory, as
it stands now. Bell [55, pp. 173–174] argues that the Copenhagen interpret-
ation is “unprofessionally vague and ambiguous”. I think he is right. I also
think he is right to complain that quantum mechanics, when interpreted in tra-
ditional Copenhagen terms, seems to be “exclusively concerned with ‘results
of measurement’ and [seems to have] nothing to say about anything else”. I

25Although I paraphrase some statements from Fuchs and Peres’ article here, I do not really want to attribute
them the meaning here intended to those authors. I find the statements at the beginning and at the end of their
article contradictory; surely because I have not understood what they mean by ‘interpretation’.
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share Bell’s conviction that the aim of physics is to understand nature, and
that counting detector “clicks” is not intrinsically any more interesting than
counting beans. If prediction and control were my aim in life I would have
become an engineer, not a physicist.

There is also a facetious side in the assertion (see again Fuchs and Peres’ quotation, supra)
that quantum theory encodes probabilities for macroscopic events: this would mean that
quantum theory is not meant to describe ‘microscopic’ phenomena!

One could argue: ‘but in the microscopic domain there cannot be, by the very meaning
of “microscopic”, any experiential facts, since those phenomena are not immediately ac-
cessible to your senses’. And that is true. But in fact the original programme and approach
was to try to imagine or to represent to ourselves those microscopic phenomena by means
of macroscopic concepts — we could say with Nietzsche [558]:

— Aber diess bedeute euch Wille zur Wahrheit, dass Alles verwandelt wer-
de in Menschen-Denkbares, Menschen-Sichtbares, Menschen-Fühlbares! Eu-
re eignen Sinne sollt ihr zu Ende denken!

And the beautiful statistical-mechanical and kinetic-theoretical studies of Maxwell, Boltzmann,
Gibbs, amongst others, are examples of such a programme. Many physicists today say that
this programme is no longer feasible, and some even mention ‘proofs’ of such impossib-
ility, e.g. Bell’s theorem. But even if there really was a theorem showing a contradiction
of locality and determinism with experimental data: who cares? Fuchs and Peres [249]
say that a non-local theory ‘would eventually have to encompass everything in the uni-
verse, including ourselves, and lead to bizarre self-referential logical paradoxes’. That
is a bizarre statement: Newtonian mechanics is in principle non-local, but that has never
hindered anybody to apply it for very concrete purposes, like calculating where a bomb
should land, with no paradoxes at all. And non-local theories are studied and used in mod-
ern continuum mechanics [204, 205, 207–212, 214, 215, 218]. In any case, with regard to
Bell’s theorem we have seen in § 17 that its import in respect of locality and determinism
is naught. In fact, there is a different theorem, and a very simple one, whose content goes
in a very different direction than that of Bell’s theorem: it states that any quantum system,
in fact, any system whatever, can always be considered as a classical one in which some
measurements are ‘forbidden’; see e.g. Holevo [349, § I.7].

Fortunately, the programme of Maxwell, Boltzmann, Gibbs has not been abandoned,
and many studies [43–45, 76, 77, 91, 124, 141, 327, 328, 340, 377, 378, 380, 382, 383,
387–389, 391, 392, 394, 576, 626, 635, 676, 724–729] (see also [116–118]) — some
more, some less interesting, some convincing, some unconvincing — are pursued today
in its spirit. Moreover, thanks to the appearance of freely and publicly available sci-
entific archives like arXiv.org (http://arxiv.org) and mp_arc (http://www.ma.
utexas.edu/mp_arc/), these studies may finally appear freely, without the ostracism of
‘peer-reviewed’ periodicals.26 Representative of this ostracism, still present today, is the

26Some periodicals are exceptions; in particular Foundations of Physics, to the editor of which, Alwyn van
der Merwe, I pay my homages.

http://arxiv.org
http://www.ma.utexas.edu/mp_arc/
http://www.ma.utexas.edu/mp_arc/
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following remark by Boyer at the end of a study in which he apparently shows that the
Aharonov-Bohm phase shift ‘may well arise from classical electromagnetic forces which
are simply more subtle in the magnetic case since they involve relativistic effects of the
order v2/c2’ [77]:

I should also like to thank the Editor for his decision to accept for public-
ation my two papers dealing with the Aharonov-Bohm phase shift and re-
lated classical electromagnetic theory, despite the existence of a (minority)
opinion among the several referees that urged rejection on the grounds that,
although my calculations might be correct, my conclusions were “certain”
to be wrong and thus would “lead to unnecessary confusion” regarding the
Aharonov-Bohm phase shift.

34. In the previous section I have mentioned a theorem by Holevo [349, § I.7], stating
that any physical system whatever can always be considered as a classical one in which
some measurements are ‘forbidden’. There is an analogous theorem stating that any phys-
ical system whatever can always also be considered as a quantum one in which some
measurements are ‘forbidden’. The proof, that I do not give here [603], is based on the fact
that a simplex of any dimension, say D, can always be obtained as a projection of the state
space of a D-level quantum system. Projecting a state space (viz., the set of preparation
vectors), thus obtaining a new one, corresponds to declaring some measurements unfeas-
ible (i.e., to eliminating some vectors from the outcome-vector set). To understand this
fact one may draw a parallel with the standard topology of Rn: you can derive it from the
set of balls or from the set of hypercubes: it does not matter which since every ball can be
inscribed in a hypercube and every hypercube in a ball.27 These theorems show that one
should not give some, but not ‘too much’, physical meaning to the particular simplicial and
‘Hilbertian’ convex structures of classical and quantum systems.

There are some reasons which make me believe that the Hilbertian convex structure of
quantum theory is not fundamental, whereas the simplicial one of classical physics is the
fundamental one.

First, the horrible dimensional jump of the state space for systems of different dimen-
sionality: if a quantum system has a state space of dimension N (with N = D2 − 1 for
some natural D), the next ‘larger’ quantum system has 2

√
N + 1 + 1 more dimensions!28

Compare this with a classical system, where this dimensional jump is simply 1 instead,
independently of N. This has important and annoying consequences in the actual study of
some systems. Consider e.g. the case in which we are studying a two-level quantum system
which is a subsystem of a larger one. As long as we are interested in measurements and
preparations of the subsystem only, we only need to work with 3 real independent variables
(from the independent components of the statistical operator). But as soon as we consider
a single measurement or preparation concerning the larger system (e.g., we want to keep

27But this topological fact is not true in infinite dimensions. Analogously I wonder whether the reciprocal
‘inscribableness’ of quantum and classical systems holds for infinite-dimensional ones.

28This obviously follows from the fact that a D-level quantum system has a state space of dimension N =

D2 − 1. Note also that N = K − 1 for K as defined in Papers (C) and (D).
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track of a global quantity), we have to increase the number of variables, and the minimal
increase allowed by the quantum mechanical formalism is by 5 real variables! It may well
be the case that some of these are unimportant for us, but we have to drag them along
anyway. Another way is to consider only the useful additional variables as extra paramet-
ers. Situations of this kind made it necessary to consider non-completely positive maps
and their restricted domains [115, 245, 406–408, 577, 633, 652, 731]. On the other hand,
in a situation analogous to the above, but for a classical system, the minimum necessary
number of additional variables would just be 1. Classical theories are more flexible. Cf the
remarks given in the earlier versions (available at http://arxiv.org) of Paper (B).

Another reason, related to the first one, is the excessive number of variables that appear
when we ‘compose’ two or more systems, an operation implemented by the tensor product
in the quantum-mechanical formalism. E.g., composing two three-level systems, described
by 8 variables each, we suddenly have to handle with 80 variables. In the classical case
this number would be 64 instead. The additional variables and the extra correlations that
accompany them make me believe that the tensor-product operation of quantum mechan-
ics puts in, physically, some more ‘systems’ or more generally speaking some ‘additional
phenomena’ than just the systems entering the tensor product. In any case, I think that
we ought to consider alternative mathematical approaches to the relation between ‘subsys-
tems’ and ‘supersystems’ than Cartesian or tensor products. I made some remarks on this
in Paper (C) and a mathematical study is almost ready [603].

35. It should be noted hew in the vector framework here presented there is a clear dif-
ference between preparations and measurement outcomes, and this difference is reflected
in their mathematical representatives, the preparation vectors and outcome vectors. In fact,
the convex spaces of these two kinds of vectors can be very different. In particular, they
need not have the same number of extreme points.

In view of this fact, classical and quantum systems are particular because their outcome-
and preparation-vector spaces have not only the same cardinality, but can even be given the
same linear, respectively Hilbertian structure. It is this peculiarity that allows us to associ-
ate to every ‘ket’ |φ 〉 a ‘bra’ 〈φ |, and vice versa, in quantum mechanics. Hence what I am
saying is that in general physical theories a correspondence or ‘pairing’ analogous to the
quantum-mechanical |φ 〉! 〈φ | does not exist.

This leads me to two brief comments. The first is that I do not like the oft-heard
sentence ‘the probability that a system prepared in the state |φ 〉 be found in the state |ψ 〉
is. . . ’. This sentence would be meaningless in other physical theories: in general we can
only speak about the plausibility that a measurement yield this or that outcome; and it is not
completely clear to me what ‘finding a system in a given state’ means. We can infer that it
was prepared in a given state, which is a different statement. From this point of view the
Kochen-Specker [438] and similar theorems lose their (meta-mathematical) meaning. Note
also that the statement that a quantum system ‘is found’ in some state needs qualification:
amongst which states? It usually understood that the states in which it can be found is a
complete orthonormal set; but then I do not see why one could not ask for the plausibility
(density) that the system be found in the state |ψ 〉 amongst all possibile states, orthogonal

http://arxiv.org
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or not. This question would simply correspond to a positive-operator-valued measure with
a continuum of results.29

The second comment is that we perhaps ought to search for some ‘physical meaning’
for the fact that classical and quantum systems have that particular isomorphism between
the spaces of outcome- and preparation-vectors.

36. Some people regard the schematisation of what we do with and within physical
theories into the propositions S̄ etc. as ‘operational’, as I also did once. But now I must
confess that I do not see exactly what is that this adjective should put into relevance, or
demarcate, or exclude. Are not all proper physical theories (i.e., excluding toy theories and
mathematical divertissements like string theory) ‘operational’? Which theories are not? I
should like to quote a passage from Truesdell’s review [706] of a book by Jammer:

Thus, on page 120 [of Jammer’s book], “In contrast to a purely hypothetico-
deductive theory, as for instance axiomatized geometry, where primitive no-
tions (like ‘point,’ ‘straight line,’ and so forth) can be taken as implicitly
defined by the set of axioms of the theory, in mechanics semantic rules or
correlations with experience have to be considered and a definiendum, even if
defined by an implicit definition, must ultimately be determinable in its quant-
itative aspects through recourse to operational measurements.” This is simply
nonsense. If a physicist says, “I take a sphere of one inch radius weighing
one pound,” why is only the pound and not the sphere or the inch in need of
“operational” definition? Cannot the sort of person who derives comfort from
“operational” definitions manufacture them for geometry, too? And when we
are told, “Mach did not say what ‘mass’ really is but rather advanced an impli-
cit definition of the concept relegating the quantitative determination to certain
operational procedures,” are we really expected to find any meaning here, or
is it just a smooth transition to the next chapter in a sociological essay?

Surely all proper physical theories are created to mathematically frame and describe mat-
ters of experience, and therefore can but be ‘operational’ in this sense. But surely they also
involve abstractions and generalisations, otherwise they would not be theories but mere
catalogues (and even catalogues imply a certain degree of abstraction), as Poincaré [594,
ch. IX] said with other, famous words. I probably do not need to mention the fact that the
very devising and set-up of every physical experiment is imbued with theory. All in all,
the main problem with all this discussion on ‘operationalism’ seems to lie in the maniacal
urge to paint as all white or all black something which has more colours than the rainbow.

The propositions S̄ etc. are not meant to exclusively represent ‘laboratory instructions’
or the like. From this point of view the chosen names of ‘preparation’, ‘measurement’,
and ‘outcome’ are particularly unfortunate; but I have not yet found more suitable altern-
atives.30 In the example of § 20, e.g., the proposition Cc represented the specification of

29An example for a two-level quantum system is the positive-operator-valued measure {|Ω 〉〈Ω | dΩ }, where
Ω represent the coordinates of a surface element on the Bloch sphere.

30I often contemplate using the Latin terms praeparatio for the S̄ j, quaestio or mensuratio for the Mk, and
prouentus for the Ri.
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a particular phase point, and the proposition I represented the specification of the evolu-
tion operator amongst other things. If these specifications are ‘operational’ or not does not
interest me, in view of the discussion above.
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Historical notes and additional remarks

37. The basic ideas behind what I have here called, quite laconically, ‘vector frame-
work’ have a relatively long history, though less than a century long. I shall try to give
some references, but they will be very incomplete.

I think one can recognise two and a half fundamental elements in the framework. The
first is the introduction of the notions of preparation (or state), measurement, and outcome;
or similar ones. They are the arguments of plausibilities. The second is the association of
mathematical objects to those notions, objects that encode the plausibilities and are prin-
cipally characterised by a convex structure. The ‘half’ element are the particular relations
that we can introduce amongst preparations, measurements, and outcomes; specifically,
what I have called ‘mixing’ and ‘coarsening’. I consider this a ‘half’ element because it is
quite naturally derived from the first one.

The natural notions of preparation, measurement, and outcome have basically always
been present in physics; but they have often been directly identified with their mathemat-
ical representatives, without the formal intermediary of logical propositions. Some may
think that such intermediaries are in fact unnecessary; but I disagree. When we add (or
subtract) a new proposition in a set of given ones there are usually no dramatical changes
in this set, provided the new proposition is not inconsistent with the rest. We simply need
to assign new plausibilities (or some become irrelevant, in the case of subtraction); the
existing ones usually remain valid. On the other hand, the mathematical structure of the
associated mathematical objects may have to be changed dramatically. In this resides part
of the usefulness of the propositions as intermediaries. We have seen e.g. how gentle the
‘transition’ between a classical and a quantum system is from the propositional point of
view: we have only taken away some propositions regarding some measurements. And
yet the associated mathematical structure has changed from that of a phase space to that
of a complex Hilbert space, and the convex structure from that of an infinite-dimensional
simplex to that of a finite-dimensional non-simplicial convex body. The first studies known
to me in which the notions of preparation etc. were introduced more or less explicitly as
propositions are those by Strauß [672], and Foulis and Randall [246–248, 613–615], which
also introduced the notion of a plausibility table; see also Ludwig, Dähn, and Stolz [146–
148, 485–493, 669, 670], Ekstein [194, 195], Hellwig and Kraus [337, 338], Giles [268–
270], Gudder [301–304], Lubkin [484], Holevo [349], Hardy [316]. In other studies those
notions are rather connected to their mathematical representatives than to general propos-
itions; but in many cases it is indeed difficult to put a demarcation line. Therefore the
studies I mention in the next paragraphs should also be taken into account.

Amongst the first studies, known to me, of the mathematical representatives, especially
from a convex-geometrical point of view, I can mention Mackey’s book [495], followed
by numerous other studies amongst which of particular importance are those by Lud-
wig, Dähn, and Stolz [146–148, 485–493, 669, 670] already mentioned, Gleason [279],
Kochen and Specker [437, 438], Gudder [96, 298–304], Mielnik [524–528], Davies and
Lewis [153–157], Hellwig and Kraus [337, 338], Holevo [347–350, 352], Ali, Emch, and
Prugovečki [15–17], Bloore [71], Wright [748–751], Harriman [318–324], Ivanović [363–
367], Bugajski, Lahti, Busch, Schroeck, Grabowski, Beltrametti [56, 57, 96, 97, 105–
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113, 448, 449, 641–645]; see also Jones [404, 405]. In many of these works the notions
of state and measurement have narrower connotations than those presented here (some of
these authors, e.g., speak about preparations of ‘beams’ of particles; although I suspect
they are aware that their formalism has more general applications). Moreover, the no-
tion of state has almost always been associated to a particular time instant, which is not
necessarily the case in my presentation, cf. § 21.

Almost all of the above studies were borne out of a desire to understand quantum
theory. There is also another seam of studies, principally concerned with partially ordered
sets and various kinds of lattices, that from the point of view of the framework presented
here represent the structure induced in the set of measurements (not outcomes; cf. § 26) by
the notions of measurement mixing and coarsening explained in § 24. The germs may be
found in an article by Birkhoff and von Neumann [69]. Notably, their paper begins thus:

One of the aspects of quantum theory which has attracted the most general
attention, is the novelty of the logical notions which it presupposes. It asserts
that even a complete mathematical description of a physical system S does
not in general enable one to predict with certainty the result of an experiment
on S, and that in particular one can never predict with certainty both the pos-
ition and the momentum of S (Heisenberg’s Uncertainty Principle). It further
asserts that most pairs of observations are incompatible, and cannot be made
on S simultaneously (Principle of Non-commutativity of Observations).

Here one wonders what is so logically novel about these notions. They may be physically
novel, or better, unusual; but surely not ‘logically’ novel. There is nothing in the axioms
of logic that contradicts these notions. But the authors continue:

The object of the present paper is to discover what logical structure one may
hope to find in physical theories which, like quantum mechanics, do not con-
form to classical logic.

But we have seen in the preceding sections that quantum mechanics is just a particular
application of ‘classical’ logic and ‘classical’ plausibility theory, so it surely ‘conforms’ to
both. We see here one of the seeds of that confusion of logic and probability/plausibility
theory with physics that still plagues us today. It is remarkable that these two eminent
mathematicians planted one of those obnoxious seeds. Fortunately, Strauß [672] (and later
Koopman [441]), making analogous studies, recognised the point I have just made. Also
Bodiou [72] has in his studies a clearer view than Birkhoff and von Neumann:

le principe des probabilités composées n’est pas vérifié par les pondérations
conditionnées quantiques. On interprète, d’un point de vue classique cette
non-vérification en considérant que le “conditionnement quantique” est, en
réalité, un “changement de catégorie d’épreuves”.

In other words, we have different contexts (or ‘sample spaces’ as many statisticians would
say), one for each measurement; therefore the specification of the measurement M is an
essential part of the framework. In our list Pool [599, 600] and Greechie [291, 292] follow
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next. This kind of studies then joins the seam on convex structures, so I may refer to the
references of the previous paragraph. Studies related to the notions of measurement mixing
and coarsening, though not from a lattice point of view, are those by Blackwell [70], and
Morse and Sacksteder [536].

More recent studies, which I do not try to put into a category or another, are e.g. those in
refs [4–11, 37–42, 58–63, 115, 128, 129, 290, 334–336, 417, 482, 483, 579, 580, 665, 666,
739–741, 751, 763]; many of them, although relatively relevant to the vector framework,
are specifically concerned with quantum mechanics.

Amongst all the above studies, those by Holevo [347–350, 352] deserve special men-
tion; he systematised the whole framework within the general theory of statistical models
and proved many important results that are still rediscovered today. Hardy’s work [316]
also deserves special mention as it presented the basic ideas in the simplest possible math-
ematical form.

Finally, it is worth mentioning that many intimate connexions exist amongst the vector
framework, the theory of statistical models [e.g., 66, 67, 259, 514], and system theory [412,
743, 753] (cf. also [412, 743, 744]).





IV. A synthesis: induction and state
assignment

Putting together the Laplace-Jaynes approach and the vector
framework

38. You have probably noticed that some notation and terminology from ch. III had
already appeared in ch. II, especially in §§ 11–12. And you have probably thought, cor-
rectly, that that similarity was not accidental. Consider the following two situations:

(a) We have a problem of induction concerning some measurement instances {M(τ)
kτ
} with

outcomes {R(τ)
iτ
}; these regards a given physical system. We decide to adopt the Laplace-

Jaynes approach; we therefore need to specify the set of circumstances {C(τ)
j } and the

prior plausibilities

P(Ri|Mk ∧C j ∧ I) for all i, k, and i ∈ Λk, (III.15)r

and this specification we do using the theory describing the physical system.

(b) We have a given physical system for which we have introduced sets of preparation cir-
cumstances {C j}, measurements {Mk}, and outcomes {Ri}, with the associated vectors.
In a given collection of measurements we know that the preparation circumstance was
always ‘the same’, though we do not know which. Our problem is to assign plaus-
ibilities to the circumstances given the evidence of the outcome obtained. This is the
typical situation that in plausibilistic physics we call ‘state assignment’ or ‘estimation’
or ‘retrodiction’.

It is clear that the two problems are faces of the same coin. We solve both at once by apply-
ing the formulae for the Laplace-Jaynes approach as given in § 5 of Paper (G) or in §§ 11–
13 above; in these formulae the plausibilities (III.15), dictated by the physical theory, will
be encoded into the outcome- and preparation-vectors, as in eqs. (III.19) and (III.23):

P(Ri|Mk ∧C j ∧ I) ≡ pi j = ri
Tx j. (IV.1)

57
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Given data D consisting in N outcomes of various kinds of measurements, with fre-
quencies (Ni),

D B R(τN )
iN
∧ · · · ∧ R(τ1)

i1︸                ︷︷                ︸
Ri appears Ni times

(with ia ∈ Λka , a = 1, . . . ,N), (II.16)r

the plausibility of the circumstance C j is therefore given by eq. (II.18):

P(C j|D ∧ I) =

( ∏
k,i∈Λk

pNi
i j

)
P(C j| I)

∑
j

( ∏
k,i∈Λk

pNi
i j

)
P(C j| I)

, (II.18)r

which can also be rewritten, using eq. (4) of Paper (C) or (D), or equivalently eq. (III.19),
as

P(C j|D ∧ I) =

[∏
l

(rl
Tx j)Nl

]
P(C j| I)

∑
j

[∏
l

(rl
Tx j)Nl

]
P(C j| I)

. (IV.2)

The plausibility that, performing a new instance τN+1 of some measurement Mk, we
obtain the outcome Ri is

P(R(τN+1)
i |M(τN+1)

k ∧ D ∧ I) =
∑

j

P(Ri|Mk ∧C j ∧ I) P(C j|D ∧ I),

=
∑

j

ri
Tx j

[∏
l

(rl
Tx j)Nl

]
P(C j| I)

∑
j

[∏
l

(rl
Tx j)Nl

]
P(C j| I)

≡ ri
T
∑

j

x j

[∏
l

(rl
Tx j)Nl

]
P(C j| I)

∑
j

[∏
l

(rl
Tx j)Nl

]
P(C j| I)

.

(IV.3)

The last equation shows that to the conjunction of data and prior knowledge D ∧ I we
can associate an ‘effective’ circumstance-vector

dD∧I B
∑

j

x j

[∏
l

(rl
Tx j)Nl

]
γ j

∑
j

[∏
l

(rl
Tx j)Nl

]
γ j

. (IV.4)

39. The above formulae are all expressed in terms of a set of preparation circumstances
{C j}. We have seen that in both the convex framework and the Laplace-Jaynes approach
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there is a natural equivalence relation amongst circumstances. For the convex framework
it was defined in § 25, eq. (III.24); for the Laplace-Jaynes approach it was defined in § 13,
eq. (II.19). It is clear that the two definitions coincide.

We also saw that in both frameworks it is quite natural to disjoin equivalent circum-
stances together, since neither framework can lead to relative differences in the plausibil-
ities of equivalent circumstances, other than those that were already present in the prior
data. More precisely: for each pair of equivalent circumstances C′, C′′, the ratio of their
updated plausibilities cannot change and is equal to that of their prior plausibilities:

C′ ∼ C′′ =⇒ P(C′|D ∧ I)
P(C′′|D ∧ I)

=
P(C′| I)
P(C′′| I)

, for whatever data D consisting of outcomes.

(IV.5)
In the case of the Laplace-Jaynes approach we stopped short of disjoining equivalent

circumstances and ‘plausibility-indexing’ them. The reason is that we can follow the steps
taken in the convex framework instead, as described in § 26: we take disjunctions

S x B
∨

j∈x∼
C j. (III.34)r

of circumstances having the same circumstance-vector x. As you remember, we called
these disjunctions ‘x-indexed circumstances’, and the vectors x form a convex set.

In terms of x-indexed circumstances, our state-assignment eqs. (IV.2) and (IV.3) take
the form

p(S x|D ∧ I) dx =

[∏
l

(rl
Tx)Nl

]
p(S x| I) dx

∫ [∏
l

(rl
Tx)Nl

]
p(S x| I) dx

, (IV.6)

P(R(τN+1)
i |M(τN+1)

k ∧ D ∧ I) = ri
TdD∧I , with (IV.7)

dD∧I B
∫

x p(S x|D ∧ I) dx. (IV.8)

40. The state-assignment formulae above are valid for any physical theory — or at
least, for those theories whose plausibilistic properties can be formalised through the vec-
tor framework; but we have seen that classical mechanics and quantum mechanics are
counted amongst these. When we change to quantum-mechanical notation — because the
change is only notational, nothing more — we obtain in fact the formulae of §§ 1 and 2 of
Paper (H); in Paper (I), § 3, they have been generalised to data Df consisting of disjunc-
tions of outcome collections:

Df B
∨

(ia)∈Ξ
(R(τN )

iN
∧ · · · ∧ R(τ1)

i1
) (with ia ∈ Λka , a = 1, . . . ,N). (II.16)r

In these papers the joint convex-Laplace-Jaynes framework was used in the state assign-
ment for a three-level quantum system.
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Remarks

41. I should like to add here some remarks concerning the state-assignment framework
presented above.

The first remark concerns a comparison of the Laplace-Jaynes approach in the case of
multiple kinds of measurements, and of the approach based on (unrestricted) partial infinite
exchangeability [238; 66, § 4.6.2]. Equations (IV.6) and (IV.7) above can be rewritten,
when no reference is made to the vector framework, as

P(R(τN+1)
i |M(τN+1)

k ∧ D ∧ I) = pl(x
∫

pi(x) p(S x|D ∧ I) dx, with (IV.9)

p(S x|D ∧ I) dx =

[∏
l

pl(x)Nl
]

p(S x| I) dx
∫ [∏

l
pl(x)Nl

]
p(S x| I) dx

, (IV.10)

pi(x) B P(Ri|Mk ∧ S x ∧ I). (IV.11)

We realise that they are apparently not completely equivalent, in respect of their mathem-
atical form, to those obtained from the theorem on partial infinite exchangeability. The
difference consists in the fact that within the exchangeability approach we have

pi(x) ≡ xi, i.e., p(x) ≡ x, (IV.12)

and moreover x ≡ p has a definite range, viz. the Cartesian product of the simplices asso-
ciated to the plausibility distributions of the various measurements Mk:

x ≡ p ∈�
k

∆k, ∆k B {(pi) | i ∈ Λk, pi > 0,
∑

i

pi = 1}; (IV.13)

whereas in the Laplace-Jaynes approach the parameter x belongs to a generic convex space
that depends on the meaning of the set of circumstances (e.g., the physical system from
which they stem), and must thus be specified by us, with the sole restriction

p(x) ∈ X ⊆�
k

∆k. (IV.14)

This difference lies clearly in the fact that in the exchangeability approach the parameter x
is ‘uninterpreted’, but not so in the Laplace-Jaynes approach, where x indexes propositions
that have particular meanings and whose plausibilities may be dictated by some physical
theory1.

However, the exchangeability-based formulae can be made equivalent to the Laplace-
Jaynes ones by appropriately restricting the support of the prior generating function to
those values of x such that p(x) ≡ x ∈ X . This corresponds to a particular a priori plau-
sibility judgement with regard to the possible infinite collections of outcomes that we can
ever observe; a judgement that may stem from some physical theory. From this point of
view there is hence no substantial difference between the two approaches (but see Pa-
per (G) for a discussion of other differences in range of applicability and purposes).

1Which in the end means: by us, since it is we who, based on our experience, create and distill physical
theories.
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42. The second remark, which has many connexions with the previous one, concerns
a comparison of the framework for state assignment, as developed above, with that one
presented by Caves, Fuchs, and Schack [121, 122, 250, 251], based on their ‘quantum
de Finetti representation theorem’ [122, 355, 671]. In Paper (G) I lament the fact that
the quantum de Finetti approach does not work with quantum mechanics on real and qua-
ternionic Hilbert space; but a general state-assignment framework should apply to any
conceivable, i.e. self-consistent, physical theory, even one that apparently describes (yet)
unobserved phenomena. The framework here presented does satisfy this requirement.

Another criticisms can be levelled at the quantum de Finetti state-assignment approach2.
One of its basic assumptions is that a collection of quantum systems (even ones local-
ised at arbitrary space-time separations) can be handled as a quantum system in itself
— with density matrices describing its preparations etc. A similar assumption was also
made by Balian and Balazs [33, 35] in a tentative to justify the maximum-von Neumann-
entropy principle in quantum statistical mechanics. I personally see this assumption (which
also seems to be the cause of the inapplicability of the approach to real and quaternionic
quantum mechanics) as completely unwarranted. We cannot take a collection of quantum
systems and gratuitously state that they collectively behave as a quantum ‘super-system’:
this would be a statement with important physical consequences and would surely need
qualification. Imagine that we find a report on some quantum experiments made twenty
years ago in a distant land, say 7 000 km from here. The report contains a very detailed
description (including, e.g., the temperature and humidity of the laboratory et sim.) of a
collection of experimental set-ups, each of which can be conceptually divided into a ‘pre-
paration set-up’, which is always the same, and a ‘measurement set-up’ which is different
for different experiments of the collection. The report also contains the outcome data ob-
tained in these measurements. Now we can reproduce, by carefully following the reported
instructions, the preparation set-up and perform new measurements on it and collect new
outcome data. I should be willing, in this situation, to use the old and the new data together
to assign a density matrix to the preparation set-up. And yet, I see no physical grounds for
considering the old and the new experiments as performed on a ‘quantum super-system’
extending twenty years in time and thousands of kilometres in space!

The reason why in the example I am willing to use the old and new data is simply be-
cause I judge the preparation scheme to be the same in all old and new experiments (in the
precise sense of eqs. (I), (IV) of Paper (G) and (II.11), (II.12) above), and want therefore
to assign to it a preparation-vector that encode the plausibilities for experiments performed
following that scheme. This is precisely what we do in the Laplace-Jaynes approach,
without that additional, and in this case also very suspect, ‘super-system’ assumption.3

43. The studies of the above-mentioned papers originate from the observation that it
is always possible to analyse a given context at a deeper logical level. Syntactically and

2N.B.: I am now speaking about the quantum state-assignment approach, not the quantum de Finetti theorem;
the latter is in fact a very interesting piece of mathematics.

3Moreover, as discussed in Paper (G), with the Laplace-Jaynes approach we do not need to entertain an
infinite collection of additional fictive similar experiments either.
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semantically this analysis is done by introducing some set of propositions so chosen as
to satisfy particular plausibilistic properties (see Paper (F), § 4; Paper (G), §§ 5.1, 5.3).
Such propositions have been called ‘circumstances’ for want of a better term,4 and I have
called the approach based on them the ‘Laplace-Jaynes approach’, since the main point of
view is foreshadowed in Laplace [450] and the idea is briefly but explicitly expressed in
Jaynes [393].5

What is important to stress is that the meaning of these circumstances is quite arbit-
rary (so long as their plausibilities satisfy the mentioned properties). This means that an
analysis into circumstances can be done from the points of view of different theories and
even of different philosophies. Hence two (or more) different persons, with background
knowledges I′ and I′′, will choose in general different sets of circumstances {C′j′ }, {C′′j′′ },
as well as different conditional plausibilities P(Ri|C′j′′ ∧ I′) and P(Ri|C′′j′′ ∧ I′′), for all the
propositions Ri of common interest — call these ‘outcomes’. The plausibilities for the cir-
cumstances themselves, P(C′j′′ | I′) and P(C′′j′′ | I′′), will also be generally different of course.

However, as soon as the two persons perform the ‘plausibility-indexing’ of their re-
spective sets of circumstances (as described in Paper (F), § 4, and (G), § 5.3), obtaining
the new sets {S ′p} and {S ′′p } with

P(Ri| S ′p ∧ I′) = P(Ri| S ′′p ∧ I′′) ≡ pi, (IV.15)

they will find themselves in a sort of formal agreement on the plausibilities assigned to the
outcomes Ri conditional on each p-indexed circumstance, as the above equation shows.
The agreement is only formal because the circumstances S ′p, S ′′p , that have the same index
p will have different meanings to the two persons. This difference will in fact be manifest
in the difference between the plausibilities P(S ′p| I′) and P(S ′′p | I′′).

But also the difference in those plausibilities can be reduced. If there are multiple ‘in-
stances’ — in the sense discussed in Paper (G) — of the outcomes Ri, then the collection
of an enough large amount of data will lead, under certain assumptions, to the mutual
convergence of those plausibilities. The two persons will then formally agree on all the
updated plausibilities involving the plausibility-indexed circumstances S ′p and S ′′p , even
though the meanings of the latter will still be different. Thus a difference in philosophy
or interpretation does not lead to a difference in the mathematical formalism and in the
predictions.

44. Some of the points of the previous section, like e.g. the convergence of the updated
total plausibilities, are also valid for the approach to induction and to the interpretation
of ‘plausibilities of plausibilities’ based on de Finetti’s theorem [e.g., 66, 170, 171, 233,

4I sometimes contemplate using the Latin term condicio.
5As regards Laplace, the above naming is not meant to reflect historical priority or attribution: I have very

little historical knowledge on the subject. Laplace is usually presented as conceiving ‘physical’ causes for what I
here denote by C and S . I think his ‘causes’ could be read in a more general sense (cf. the passage where he calls
‘cause’ the fraction of white to black tickets [450, § II]; this is surely not a ‘physical’ cause). I could have included
the name of Bayes, who in his work [53] expresses partially similar ideas; but he seemed to me less explicit than
Laplace. Others could have been mentioned as well, like Johnson [403], de Finetti [233, § 20], or Caves [120]. I
later discovered that Mosleh and Bier [537] also propose and discuss basically the same interpretation.
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239–241, 329, 342; see also 386, 474]. This is also discussed in Paper (G), together
with the reasons for which the Laplace-Jaynes approach can be preferable to that based
on exchangeability. I think that the former approach is far more suitable to problems in
physics, since all theories introduce physical concepts that play the rôle of ‘causes’, or
more generally, of ‘circumstances’.





V. Epilogue

Summary and beginnings

45. There are many other topics, problems, conjectures, answers, ruminations about
which I should have liked to talk. As said in the prologue, there was no time or space to
talk about them. My hope for the present writing is that it have succeeded in showing its
own unity, in showing that the discussion has explored a single unbroken territory, though
from different directions.

That territory is plausibility logic. We have seen how it allows us to formalise and
quantify our conclusions about unknown facts from known similar ones; how it provides
insights and clarifications in various physical problems; how it yields a mathematical struc-
ture with which we can study the predictions of physical theories, including quantum
mechanics, prescinding these predictions from their physical contents.

Did we find in this territory something unseen before? I cannot answer this question.
I have seen many, many cases in which a study or a finding, both mine and of others, was
apparently new to many researchers and surely to its finders; but a later fortuitous literat-
ure discovery showed it to have been found or studied — and often much more deeply —
many years earlier. One of the studies here presented that I have, at present, not seen done
somewhen else is the mathematical characterisation of what I have called the ‘Laplace-
Jaynes approach’ to induction and to statistical models; especially the introduction of a set
of propositions having particular plausibilistic properties that fit this approach. In what I
have called the ‘vector framework’, I have not seen remarked before that the propositions
it is based upon need not refer to particular time instants, but can pertain more general
situations that extend over time ranges or that are even atemporal. In general those pro-
positions can refer to the usual boundary- and initial-conditions of physical theories. Nor
have I seen somewhere else the mechanical algorithm here presented to derive the specific
structures of the framework for a given physical theory, given the probabilities specified by
that theory, in the finite-dimensional case. Unseen for me was also the derivation through
that framework of general state-assignment (and measurement-assignment) techniques as
particular problems of induction, and in particular as applications of the Laplace-Jaynes
approach. Finally, other passing remarks as those in § 22 and more elaborate ones as those
in Papers (B) and (E) I have not previously seen either.

Is there something to ‘conclude’ from these studies? I have not drawn any ‘conclu-
sions’, apart from the fact that there should be more communication and less feeling of

65
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self-sufficiency amongst physicists, mathematicians, logicians, and philosophers; that as a
rule of thumb we physicists are philosophical asses; that most fundamental claims about
quantum mechanics are unwarranted but quantum mechanicians pretend not to notice (fear
of seeing their funding cut?); that the majority of scientific activity today is what Trues-
dell [708, lecture VI] calls ‘trade science’ and ‘religion science’. Am I too pessimistic? No.
Am I exaggerating? Not really; but it is true that I am withholding some positive thoughts
on purpose. I do not want to do that, because the message that one gets from todays’
journals, conferences, meetings is ‘All is well in science!’, ‘We’re doing just fine!’, ‘How
intelligent and clever we are!’. Someone sometimes has to tell that in fact not everything
is well, and some things are very bad indeed.

Other more physical or mathematical conclusions can the readers draw for themselves.
For me the studies here presented are beginnings for future studies and projects.

Future research directions

The Road goes ever on and on
Down from the door where it began.

Now far ahead the Road has gone,
And I must follow, if I can,

Pursuing it with eager feet,
Until it joins some larger way

Where many paths and errands meet.
And whither then? I cannot say.

Bilbo Baggins [700]

Plausibilistic physics

46. The work that has been presented here is particularly suited to study so-called
‘inverse problems’ in physics. The first field that comes to mind is, of course, statistical
mechanics, in which we try to get some knowledge about the microscopic description of
a given class of phenomena from their macroscopic descriptions, and then the other way
round.

The foundations of statistical mechanics (and for definiteness I mean ‘classical’ stat-
istical mechanics) are today based on the maximum-entropy principle or, more generally,
on the maximum-calibre principle [379, 381], thanks to which the theory can consistently
be applied to non-equilibrium phenomena. The basic idea of these principles is to assign a
plausibility distribution to the preparation circumstances of a system (and ‘preparation’ can
here mean more generally a description of a trajectory of the system in phase-space) such
that (a) we get expectation values for particular coarse-grained (field) quantities that are
equal to the measured values, and (b) the plausibility distribution maximise the Kullback-
Leibler divergence in respect of a given ‘reference’ plausibility distribution.
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This procedure is quite successful and completely self-consistent. In non-dissipative
systems in equilibrium the reference distribution is chosen by symmetry or invariance ar-
guments (e.g., invariance with respect to the symplectic structure of the phase space, which
generally means invariance under the action of the evolution operator). But in some situ-
ations, in particular the most interesting ones that concern non-equilibrium phenomena, it
is not always clear which reference distribution should be chosen. Examples are provided
in the study of granular materials [31, 73, 80–84, 137, 150, 165, 179, 180, 228, 229, 258,
260, 280, 283, 354, 368, 415, 419, 439, 440, 458, 476, 477, 480, 481, 519, 520, 522, 523,
532, 533, 538, 559, 565, 568, 569, 573, 607, 608, 629, 631, 646, 667, 722, 742, 759].

The vector framework discussed in ch. III makes allowance for the application of
the maximum-entropy principle to generic systems (in fact it leads to an application in
quantum mechanics that apparently differs from that based on the von Neumann-entropy
principle, as discussed in § 48 infra). But it also suggests alternative approaches. In par-
ticular, it suggests that the problem of assigning a plausibility distribution to the possible
‘microscopic’ circumstances in simply one of state assignment, of the kind discussed in
ch. IV. As we have seen, in that approach we must assign a prior plausibility distribu-
tion over the possible circumstances; this seems to parallel the specification of a reference
distribution in the maximum-entropy approach. The ‘state-assignment approach’ to statist-
ical mechanics would appear, in a sense, to reflect the historical development of the vari-
ous models and distributions that have been assigned during the development of statistical
mechanics. Consider, simplifying a lot the real developments, that initially a (symplectic-
invariant) distribution over the whole phase-space was assigned, but then, comparing its
predictions to actual measurement outcomes, it was found that a distribution assigning
reduced weights to circumstances corresponding to particle permutations — the famous
division by N! — yielded better predictions. This can be seen as a sort of historical ‘up-
date’ of a prior distribution to a new one conditional on the observed results; although this
update did not really followed Bayes’ theorem, since it was a ‘meta-theoretical’ update.
Something similar is today happening in the study of granular materials [see refs above].
The state-assignment approach to statistical mechanics goes along the same line, but the
update is really done according to Bayes’ theorem. Consistency should require that it lead
to the same posterior distributions as the maximum-entropy principle. Does it? For which
prior distributions? Can the maximum-entropy and -calibre principles perhaps be derived
from the state-assignment one?

47. There are very interesting and general results, presented by Murdoch, Pitteri, Robin-
son, et al. [539–550, 589, 591, 592, 623, 624], on the derivation of the most general laws
for continuum media from microscopic particle models, which generalise previous ap-
proaches by e.g. Kirkwood, Irving, et al. [359, 360, 421–426, 468–470] in the previous
century (of course, there are much older studies, for which see e.g. Truesdell [711]; worthy
of mention are those by Waterston [737]). Murdoch’s and Pitteri’s studies, however, stop
short of including thermodynamic phenomena. On the other hand, twenty years ago Jaynes
put forward a unifying statistical-mechanical framework [379, 381], a generalisation of the
‘maximum-entropy principle’, which is directly applicable to non-equilibrium phenom-
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ena. It is basically founded on the consideration of probability distributions on path space
instead of phase space. It seems to me that Jaynes’ framework can be used to extend Mur-
doch’s and Pitteri’s work to equilibrium and especially non-equilibrium thermodynamic
phenomena (note that I mean something more general than the approaches based on ‘local
equilibrium’ à la de Groot & Mazur [296]; see § 54 below), and I should like to study and
develop this possibility.

I should also like to apply Jaynes’ framework to the statistical-mechanical and thermo-
dynamic study of granular materials [see refs in § 46], and show that from this framework
one can derive all results concerning the various fluctuation-dissipation-related theorems
that have been presented in the last few years [27–30, 142, 255, 344, 345, 369, 497, 499,
690]. Finally, I should like to put together some results on ‘H-theorems’, Markov proper-
ties, and other insights by Vlad and Mackey [730], Crutchfield and Shalizi [143, 653, 654],
Dewar [167–169], De Roeck, Maes, Netočný, et al. [161, 496, 498, 500], which are
scattered in very different publications and apparently do not know of each other, and
show that they explain many features and assumptions behind Jaynes’ framework.

The use of probability logic in these investigations is essential, and the vector frame-
work is also particularly suited to these investigations.

48. As already mentioned, when we apply the maximum-Shannon-entropy principle
to a quantum system we obtain results that in general differ from those of the maximum-
von Neumann-entropy principle. Cf. the discussion in Paper (I), § 4.3. More precisely,
the results of the first method depend on the choice of prior distribution. Is there a prior
distribution that leads to the same results of the von Neumann-entropy-based approach?
Which is it? What is its significance?

49. The application of probabilistic and statistical ideas and frameworks need not be
confined to microscopic theories. In 1925 Szilard [683] proposed a probabilistic theory
for thermodynamics, as opposed to statistical mechanics; i.e., for a macroscopic theory
with no assumptions about microscopic features. (Also Einstein [189] studied a similar
approach earlier). His studies were resurrected during short periods by Lewis [466, 467],
Mandelbrot [502–505], and Tisza, Manning, and Quay [696–699]. But I have not seen
works pursuing these studies today, although Primas [606] and Paladin and Vulpiani [571]
mention Szilard’s studies; nor have I seen them generalised to (macroscopic) mechanical
theories, if not possibly in Beran’s book [65]. I think that the probabilistic, or statistical,
approach to continuum mechanics is in many contexts well worth of consideration. The
fact that different microscopic models lead, in some contexts, to the same macroscopic
statistical features, means that we can do without those microscopic assumptions alto-
gether (just like when in the study of the generic ‘vicinity’ of points we need not bring
whole metrics; just a topology can do the job). Note that I am not depreciating the usual
statistical-mechanical approach: in many cases we are in fact interested in microscopic
features, and that approach allows us to form some plausible conclusions about those mi-
croscopic features. What I am referring to are, rather, those situations in which we are not
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really interested in the microscopic details, but we introduce them only to get statistical
macroscopic (or mesoscopic) theoretical consequences to test against experiments.

Moreover, theories based on Szilard’s ideas can be useful as phenomenological ‘inter-
mediaries’ in the study of the connexion between thermodynamics and statistical mechan-
ics; diagrammatically,

thermodynamics←→ ‘statistical thermodynamics’←→ statistical mechanics.

Such an ‘interface’ can be quite and especially useful when the phenomena in question
are not just thermodynamical, but electromagneto-thermo-mechanical — and even in non-
equilibrium.

Rational continuum mechanics

50. More work must be done concerning the foundations of electromagnetism in ple-
no in connexion with non-linear mechanical and thermodynamic phenomena. Although
particular ad hoc formulae and data abound, as well as different partial theoretical founda-
tions from first principles, especially within rational continuum mechanics [132, 133, 206,
210, 357, 416, 701–703, 716], a general derivation from first, simple principles is still
lacking. It is remarkable, e.g., that there still is no unanimous general expression for the
stress and energy density for bodies sustaining electromagnetic fields simultaneously with
other thermodynamical and mechanical effects. The remarks made in this regard by, e.g.,
Robinson [623] in his book in the seventies are more or less repeated today by Erick-
sen [198–202]. (I wonder how it is possible that we are still in such a situation. Perhaps
we have become too wont to ad hoc formulae?) Both Truesdell [708, Lecture IV] and
DiCarlo [172] point out that the problem lies in the completely different conceptual and
mathematical approaches to the mechanics of bodies and to the electrodynamics in bodies:
the introduction of space-time as a relation amongst material points in the first, and as a
sort pre-existing, absolute object in the second.

As I see it, one should pursue the line of attack discussed by old but still vigorous
and ingenious Ericksen [ibid.], based on the idea that the electromagnetic field can sustain
forces; but this line could be combined with Noll’s [560–563; cf. 712, ch. 1] beautiful
(and apparently not widely known) approach to classical Galilean-relativistic mechanics,
in which inertial forces are considered as real forces (exerted by the rest of the masses of
the universe — a point of view in line with general relativity) and the basic axiom is that
the net force sustained by a material point, including the inertial ones, is always nought. In
this approach momentum is just the expression of inertial forces; hence we have that the
stress, that from control-volume or microscopic considerations [359, 422–425] is viewed
as a combination of contact forces and of momentum transfer, can be again be simply con-
sidered as an expression of forces only. With regard to energy density, I think we would
follow Serrin’s predicament, motivated by his investigations in thermodynamics [648–651]
(see also Owen [570]), to return to work and heat as fundamental quantities. This predic-
ament should perhaps be followed also in general relativity: cf. the various studies that try
to ‘localize’ the energy of the gravitational field [e.g., 93]. Serrin’s proposal accords also
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with the fact that in many systems entropy and energy are non-extensive (cf. Gurtin and
Williams [305, 308]).

Beside such a general approach from first principles, and partly as a point of ref-
erence therein, I should be curious to compile a sort of ‘table’ with the interpretations
and expressions used by specialists for the magnetic field intensity H, the electric dis-
placement D, and the polarisation and magnetisation P and M in diverse electromagneto-
thermomechanical provinces, from piezo-electricity and birefringence to ferromagnetism,
pyro-electricity, and hysteresis. Moreover, from the mathematical point of view it would
be advantageous to use the differential-form framework advocated by Hehl, Obukhov, et
al. [295, 330–332, 567] (see also [166, 472, 473, 735]), and much earlier even by Max-
well [513], which treats the electromagnetic quantities as differential forms of different
degrees.

Surely these investigations would also help in constructing a (classical) relativistic the-
ory of materials supporting electromagnetothermomechanical effects, which today, as far
as I know, is basically in the same status as it was when developed by Bressan [79] amongst
others. I see some usefulness also as regards field quantisation in non-linear media (the ap-
proaches that I have seen in the literature [e.g., 68, 176, 177, 257, 461, 582, 658] are all
more or less ad hoc and apparently try to patch the linear-case approach in a way or another.
A fresh new start is needed.)

Quantum theory

51. In ch. III I mentioned and briefly discussed the main open question about quantum
theory: why that particular convex structure? We have seen that the vector framework helps
in seeing and formulating clearly the question. It cannot, however, provide an answer by
itself, since it does not contain physical principles or laws in itself, although it is very
useful in displaying the plausibilistic consequences of such principles once they have been
specified, and although it enables one to prove that quantum theory can be recovered from
a classical theory.

The next step in ‘clearing the quantum mysteries’ is to think about and introduce real
physical models and theories. Not ‘toy’ theories, of which there are plenty today, but
serious, elegant, humanly understandable and ‘picturable’ physical theories. Perhaps we
should begin from where the situation was immediately after Planck’s presentation of his
radiation law, using, however, the concepts and mathematical apparatus that in the mean-
while have been developed in rational continuum electromagnetothermomechanics [197,
203, 206, 207, 213, 214, 216, 217, 306, 307, 509–511, 570, 634, 660, 710, 712, 715, 716].
Some interesting studies have already been pursued by Jaynes [377, 378, 380, 382, 383,
387–389, 391, 392] whose ‘neoclassical’ electromagnetic theory has given many predic-
tions identical with those of quantum field theory (e.g., Jaynes [377] derives orbit quant-
isation condition for the hydrogen atom within neo-classical theory), but without the need
of invoking quantisation (see also [43, 45, 98, 141, 325–328, 394, 530, 636, 676]). A
connected and still unsolved fundamental problem is that of radiation reaction in classical
physics [e.g., 98, 252, 521, 627, 628, 636]. The variety of phenomena that classical mech-
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anics can exhibit — e.g., think of ‘orbit quantisation’, as simply shown by the Rayleigh
oscillator — gives much hope in the programme of deriving quantum theory from the full
splendour of the classical theories.

52. Another research idea is partially related to Bell-like theorems: I have found some
indications that, when we pass from a local deterministic classical field theory to a ‘coarse-
grained’ one (be it classical or quantum) apt to describe coarser space-time scales, seem-
ing ‘non-localities’ appear in the latter. This basically comes about from the fact that,
whenever we study a compact region of space-time, we always need to specify non-local
boundary conditions (e.g., on a time- or space-like cylindrical boundary [92, 93, 114]) for
the relevant partial differential equations of the ‘finer’ field theory. This apparent fact has
of course important implications for Bell’s ‘hidden-variable’ theorem, which loses much
of its importance (cf. [534, 604]).

Teaching

53. All courses in quantum mechanics that I have hitherto attended are still heavily
based on the concepts and points of view of the works of Dirac and von Neumann. But the
latest advances in quantum mechanics have shown that the theory can be initially presen-
ted with more general — and simpler! — concepts and points of views, related to the
vector framework discussed in this work. Amongst the advantages of this framework:
(1) the basic concepts are common to classical and quantum physics, and therefore are
less counterintuitive to the students; (2) the mathematics is, at a first stage, based solely
on real vector spaces (Rn), and therefore even younger students may acquire a working
knowledge of quantum theory; (3) the formalism used is especially suitable to the study of
non-isolated quantum systems. Within this approach, a student may first learn to ‘build’ a
state space and a measurement space that suit any particular class of phenomena of interest.
The spaces thus constructed may be more or less similar (with a continuum of degrees) to
those that characterise classical physics, and the student can freely explore the differences.
Then the student learns that, amongst these spaces, there are some — the quantum ones
— that describe well many classes of microscopic phenomena. In this way the student
has met quantum physics without making conceptual and mathematical ‘jumps’ from clas-
sical physics; and is able, moreover, to identify which features of the quantum theory are
general features of any theory, which are generally non-classical, and which are peculiarly
quantum.

54. Also most thermodynamic courses are based on formalisms and points of view
that are a century old. The progress in principles [see e.g. 197, 570, 634, 660, 710] and
in applications (Atkin and Craine [25, 26] review particular examples) that started around
the sixties is virtually ignored. Today thermodynamics can be taught in a way completely
parallel to classical mechanics: (1) it is a dynamical theory, with quantities — including
temperature and entropy — that depend explicitly on time (and are, in general, field quant-
ities); (2) it is governed by few (two, in the simplest cases) basic axioms, comparable to
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Newton’s axioms in classical mechanics; (3) just like in classical mechanics, the specific-
ation of particular constitutive equations and of initial and boundary conditions leads to
(differential) equations of motions with well-defined solutions. A student can thus study,
e.g., not only the equation of state of an ideal gas, but also the behaviour of the thermal
quantities of a non-ideal gas in rapid or free expansion.
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