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Entropy of a quantum state: applications and justifications

Analysis of two derivations: Blankenbecler & Partovi’s and von Neumann’s
The two definitions are appealing and agree for quantum systems
How sensible are they?  Do they work for general statistical systems?

Application to a “toy model”:
The two definitions do not agree. Problem with BP’s definition

Conclusions



Entropy for quantum-system states

H(ρ) = –tr(ρ ln ρ)
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Entropy for quantum-system states: 
justifications and derivations

H(ρ) = –tr(ρ ln ρ)

Balian
analogies to Bayesian arguments

von Neumann
thermodynamic arguments

Ochs
invariance arguments

Blankenbecler and Partovi
intuitive information-theoretical arguments

Quantum entropy

Is a justification through purely 
probability-theoretical arguments 

possible?
≈

“It works!”-arguments



Blankenbecler & Partovi’s and von Neumann’s 
definitions

H(ρ) = -tr(ρ ln ρ)

Blankenbecler and Partovi:
“the lack of information 
must be gauged against the 
most accurate  measuring 
device available”
(Phys. Rev. Lett. 54 (1985) 373). 

von Neumann:
Implementation of 
measurements through semi-
permeable membranes 
entropy through thermodynamic 
arguments
(Mathematische Grundlagen der
Quantenmechanik (1932)). 



Blankenbecler & Partovi’s and von Neumann’s 
definitions

The definitions by Blankenbecler & Partovi’s and by von Neumann’s seem 
appealing to us, but they are still based on intuitive arguments.

It can be useful to study how sensible they are by checking whether these 
definitions work for more general statistical systems.

We begin by a review of how they work for quantum systems.



Two-level quantum system: statistical properties
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• Infinite number of pure states and ”maximal” measurements.

• Other states and measurements obtained by mixing or ”coarse-graining”.



Two-level quantum system: Bloch-sphere
representation

• The set of states can be 
represented as a sphere
(convex properties).

• Infinite pure states
(cannot be statistically
simulated).

•All mixed states can be 
realised in more than one 
way.



Two-level quantum system: Bloch-sphere
representation

• Measurements represented
by isoprobability lines.

• Infinite number of maximal 
measurements.

• Uncertainty relations for 
some maximal measurements
(no dispersion-free states).



Two-level quantum system: Bloch-sphere
representation

• Measurements represented
by isoprobability lines.

• Infinite number of maximal 
measurements.

• Uncertainty relations for 
some maximal measurements
(no dispersion-free states).



Blankenbecler & Partovi’s definition

HPar(ρ) = min{Πi} [H(ρ, {Πi}) ] = -tr(ρ ln ρ)

Consider a state (density matrix)

Check the (Shannon) entropies for all (pure) measurements upon that state

Select the least of these entropies as the entropy of that state

ρ

H(ρ, {Πi}) = -Σi tr(ρ Πi) ln tr(ρ Πi)



von Neumann’s definition

HvN(ρ) = -ΔS/N = ln(Vf/Vi) = -tr(ρ ln ρ)

Imaginary ensemble of N→∞ systems/”particles” in a given state (”gas”)

Implementation of measurements through semi-permeable membranes
Maximal reversible, isothermal performance of work to separate pure states

ρ    (N)

W = -NT ln(Vf/Vi) = Q

Thermodynamical entropy per ”particle” (entropy of pure state = 0)

(k=1)



Example: vN entropy for the maximally 
unpolarised state ρ0 = Ι/2

Implementation of the measurement Πx



Example: vN entropy for the maximally 
unpolarised state ρ0 = Ι/2



Example: vN entropy for the maximally 
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Example: vN entropy for the maximally 
unpolarised state ρ0 = Ι/2



Example: vN entropy for the maximally 
unpolarised state ρ0 = Ι/2

W = -2×N/2 T ln(1/2) = Q   HvN (ρ0) = ln(2) 



The two definitions lead
to the same entropy formula

HPar(ρ) = HvN(ρ) = H(ρ) = -tr(ρ ln ρ)



von Neumann’s entropy definition
applied to the toy model

HvN(ρ) = -tr(ρ lnρ)

The entropy which arises
from the two entropy
definitions is convex it can
be used in a constrained
maximum-entropy principle
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average value



von Neumann’s entropy definition
applied to the toy model

HvN(ρ) = -tr(ρ lnρ)

The entropy which arises
from the two entropy
definitions is convex it can
be used in a constrained
maximum-entropy principle

average value

unique state
with max entropy



Testing the two definitions
with other kinds of statistical systems

HPar

Blankenbecler and Partovi:
“the lack of information must be 
gauged against the most accurate  
measuring device available”
(Phys. Rev. Lett. 54 (1985) 373). 

von Neumann:
Implementation of measurements 
through semi-permeable membranes 

entropy through thermodynamic 
arguments
(Mathematische Grundlagen der
Quantenmechanik (1932)). 

HvN=?

• Are the two definitions equivalent for other kinds of statistical systems as well?
• Would they work in e.g. a maximum-entropy principle?



Are the two definitions equivalent for other 
kinds of statistical systems as well?

• Statistically classical systems (simplexes): Yes

• Other statistical systems: Not necessarily
(e.g.: subsystems of quantum or classical systems with 
physical constraints)



Example: a “toy model”

• The model is not quantum-mechanical, but has some
quantum properties (superposition, no dispersion-free
states)

•It could arise as subsystem of a classical or quantum system because
of symmetries or superselection rules
(Holevo: Probabilistic and Statistical Aspects of Quantum Theory (1982), § I.5)



Toy model: statistical properties
(the rules of the game)
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01/211/21/20110P(R4 )

11/201/21/21001P(R3 )
Mx

1/211/201/21100P(R2 )

1/201/211/20011P(R1)
My

S14S34S23S12S0S4S3S2S1

• Four pure states and two (binary) ”maximal” measurements.

• Other states and measurements obtained by mixing or ”coarse-graining”.



Toy model: square representation

• The set of states can be 
represented as a square
(convex properties)

• Four pure states (cannot
be statistically simulated).

• Some mixed states can be 
realised in more than one 
way (statistically non-
classical).



Toy model: square representation

• Measurements represented by 
isoprobability lines.

• Two maximal measurements.

• Pure states cannot be 
distinguished all ”in one shot”.



Toy model: square representation

• Measurements represented by 
isoprobability lines.

• Two maximal measurements.

• Pure states cannot be 
distinguished all ”in one shot”.



Blankenbecler & Partovi’s entropy definition
applied to the toy model 

HPar(S12) = 0

Consider a state

Check the (Shannon) entropies for all (pure)measurements upon that state

Select the least of these entropies as the entropy of that state

S12

H(S12, Mx) = ln 2          H(S12, My) = 0

1/2P(R4 )

1/2P(R3 )
Mx

0P(R2 )

1P(R1)
My

S12



Blankenbecler & Partovi’s entropy definition
applied to the toy model

HPar(S) = min[H(x,1-x), H(y,1-y)]



Blankenbecler & Partovi’s entropy definition
applied to the toy model

HPar(S) = min[H(x,1-x), H(y,1-y)]

Problem:
the entropy which arises from 
Blankenbecler & Partovi’s
definition is not convex it 
cannot be used in a 
constrained maximum-
entropy principle
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Blankenbecler & Partovi’s
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entropy principle average value



Blankenbecler & Partovi’s entropy definition
applied to the toy model

HPar(S) = min[H(x,1-x), H(y,1-y)]

Problem:
the entropy which arises from 
Blankenbecler & Partovi’s
definition is not convex it 
cannot be used in a 
constrained maximum-
entropy principle average value

no unique state
with max entropy!



von Neumann’s entropy definition
applied to the toy model

Implementation of the measurements



von Neumann’s entropy definition
applied to the toy model

Implementation of the measurements



Example: entropy for the mixed state S0



Example: entropy for the mixed state S0



Example: entropy for the mixed state S0



Example: entropy for the mixed state S0



Example: entropy for the mixed state S0



Example: entropy for the mixed state S0

W = -(2×N/2 + 4×N/4) T ln(1/2) = Q   HvN(S0) = ln(4) 



von Neumann’s entropy definition
applied to the toy model

HvN(S) = H(x,1-x) + H(y,1-y)



von Neumann’s entropy definition
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The entropy which arises
from von Neumann’s
definition is convex it can
be used in a constrained
maximum-entropy principle



von Neumann’s entropy definition
applied to the toy model

HvN(S) = H(x,1-x) + H(y,1-y)
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from von Neumann’s
definition is convex it can
be used in a constrained
maximum-entropy principle

average value



von Neumann’s entropy definition
applied to the toy model

HvN(S) = H(x,1-x) + H(y,1-y)

The entropy which arises
from von Neumann’s
definition is convex it can
be used in a constrained
maximum-entropy principle

average value

unique state
with max entropy



Conclusions and further questions

While the BP and vN definitions for the state entropy agree for quantum systems, they do 
not agree for more general statistical models

The BP definition does not lead in general to a convex entropy formula

Does the vN definition always lead to a convex entropy formula?

Is there a natural, universal entropy formula for any statistical system?
It should be derived from logical/probability-theoretical principles.
(Particular cases: W. Ochs, Rep. Math. Phys. 8 (1975) 109; I. Csiszár, Ann. Stat. 19 (1991) 2032)


