
Ocean Modelling 79 (2014) 1–20
Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier .com/locate /ocemod
Toward a stochastic parameterization of ocean mesoscale eddies
http://dx.doi.org/10.1016/j.ocemod.2014.04.002
1463-5003/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +44 1865 272925.
E-mail address: zanna@atm.ox.ac.uk (L. Zanna).
PierGianLuca Porta Mana, Laure Zanna ⇑
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 October 2013
Received in revised form 2 April 2014
Accepted 7 April 2014
Available online 26 April 2014

Keywords:
Mesoscale eddies
Stochastic parametrization
Sub-grid scale fluctuations
Eddy backscatter
A stochastic parameterization of ocean mesoscale eddies is constructed in order to account for the fluc-
tuations in subgrid transport and to represent upscale turbulent cascades. Eddy-resolving simulations to
derive the parameterization are performed in a quasi-geostrophic (QG) model in a double-gyre configu-
ration. The coarse-graining of the high-resolution model is giving rise to an eddy source term which rep-
resents the turbulent Reynolds stresses. The eddy source term, its mean and fluctuations are analyzed as
function of the resolved scales and external parameters.

A functional form of the resolved scales, based on a representation of turbulence as a non-Newtonian
viscoelastic medium and including the rate of strain, is used to describe the eddy source term mean,
variance and decorrelation timescale. Probability density functions (PDFs) of the eddy source term
conditional on the resolved scales are then calculated, capturing the fluctuations associated with meso-
scale eddies and their impact on the mean flow. Scalings for the mean, standard deviation, skewness, and
kurtosis of the conditional PDFs are provided as function of the grid size, forcing, and stratification of the
coarse-resolution model.

In light of these scalings, no preliminary high-resolution (QG) model runs are necessary to diagnose the
subgrid forcing and the implementation of a stochastic closure based on the conditional PDFs requires in
principle very little tuning.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The ocean contains a vigorous geostrophic mesoscale eddy field
with spatial scales of approximately 100 km at mid-latitudes,
evolving over time scales from weeks to months. In the western
boundary currents (such as the Gulf Stream and the Kuroshio)
and their extensions and in the Antarctic Circumpolar Current
(ACC) in the Southern Ocean, eddies are the primary means by
which heat is transported poleward (e.g., Danabasoglu et al.,
1994; Marshall, 1997) and have an order one effect on the mean
stratification (Henning and Vallis, 2004; Cessi and Fantini, 2004).
While most studies concentrate on the time-mean effect of the
eddies on the mean flow, it has been shown that the transient fluc-
tuations are several orders of magnitude larger than the mean
(Berloff et al., 2007a; Li and von Storch, 2013). Eddies can be key
in maintaining or rectifying the meandering jet (Berloff, 2005b;
Waterman and Jayne, 2012) therefore not only acting as a source
of dissipation but also as a driving force through nonlinear eddy-
eddy and eddy-mean flow interactions. Neglecting eddy variability
can possibly lead to large errors in the climatology of the dominant
scales. For example, the mean path and variability of western
boundary currents, which serve as boundary conditions for the
atmosphere, have a crucial impact on the dynamics of the main
atmospheric patterns (e.g., Kirtman and Vecchi, 2011). Therefore,
mesoscale eddies need to be either resolved, or understood and
parameterized, before one can have confidence in interannual
and decadal climate predictions. To properly simulate the meso-
scale eddy field and associated turbulent cascades of tracers (active
and passive) in numerical simulations, grid spacings of roughly
10 km and smaller are necessary. It is therefore unlikely that ocean
climate models will systematically resolve the Rossby radius of
deformation especially for long integrations and large ensembles,
and the effect of eddies needs to be parametrized instead.

The traditional approach of parameterizing ocean mesoscale
eddies is based on mimicking the effect of eddy fluxes on the mean
flow using schemes based on several key assumptions including:
(1) the eddy fluxes of tracers are directed down the mean gradi-
ents; (2) a single value of the eddy diffusivity is associated with
a given value of the resolved scales and/or latitude and depth.
For a potential vorticity closure, these assumptions lead to homog-
enization of conserved tracers within closed geostrophic contours
(Rhines and Young, 1982a). Those assumptions are also the basis
of the Gent and McWilliams (1990) parameterization (GM hereaf-
ter) leading to a flattening of isopycnals. The parameterization
forces the mixing of water-mass properties along isopycnals.
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Eden and Greatbatch (2008a,b), stressing the importance of dia-
pycnal mixing by mesoscale eddies, propose a parametrization in
which the GM diffusivity coefficient is determined by the eddy
kinetic energy (EKE), which is in turn evolved through a prognostic
equation. This parametrization leads to more reasonable values of
the diagnosed GM diffusivity in eddy-resolving models but pre-
sents some drawbacks in non-eddy-resolving models due in part
to the lack of EKE. Turbulent diffusion of potential vorticity (PV)
in the interior accompanied by buoyancy diffusion in surface and
bottom layers has also been proposed (Treguier et al., 1997) as
an alternative to GM. Yet, many studies using eddy-resolving mod-
els have shown that downgradient eddy closures in terms of thick-
ness or potential vorticity only show limited skill (e.g., Roberts and
Marshall, 2000) and a few up-gradient schemes have been dis-
cussed (e.g., Berloff, 2005b; Eden, 2010). For example, Wilson
and Williams (2006) propose that localized regions of down- or
up-gradient eddy transfer of tracers are associated with a charac-
teristic life cycle of ocean eddies. At steady state, there are regions
where the eddy fluxes are locally controlled by the advection of
background variance by the total flow, making it difficult to param-
eterize the detailed direction of the eddy fluxes as solely being
downgradient. Despite the tremendous improvements of the flow
after the implementation of the traditional deterministic downgra-
dient parameterizations, various processes and their variability
remain poorly represented, e.g., up-gradient momentum fluxes
leading to jet formation, sub-grid scale transport or high-frequency
variability. Lastly, the parameterizations were derived for coarse-
resolution models and their use in eddy-permitting models
remains questionable. The parameterized eddy fluxes do not match
the instantaneous diagnosed fluxes, neither the statistical nature of
errors in parameterized fluxes nor their impact on ocean and cli-
mate simulations is well quantified.

An alternative approach to the deterministic parameterization
is a stochastic or statistical closure (e.g., Kraichnan, 1959;
Herring and Kraichnan, 1972; Frederiksen and Davies, 1997;
Palmer, 2001; Williams et al., 2004; Holloway, 2004; Neelin
et al., 2008; Dorrestijn et al., 2013; Grooms and Majda, 2013)
which offers the advantage of an explicit representation of the
inherent uncertainty associated with the parametrized processes
and allows for the representation of sub-grid scale transport asso-
ciated with eddies. For example, stochastic backscatter as a means
to excite upscale energy cascade has been explored in the hierar-
chy of the numerical atmospheric models including operational
center models (e.g., Frederiksen and Davies, 1997; Shutts, 2005;
Bowler et al., 2009). The stochastic framework for subgrid-scale
parameterizations has shown some rather promising results (e.g.,
Palmer, 2012). For example, Buizza et al. (1999) proposed adding
a form of multiplicative noise to the equations of motion in the
atmosphere, where the multiplicative factor was applied to the
ensemble-mean parameterized tendency. This representation of
‘missing physics’ as a stochastic term led to several improvements
over the past decades such as improving the skill of weather and
seasonal forecasts. Frederiksen and colleagues (Frederiksen,
1999; O’Kane and Frederiksen, 2008; Zidikheri and Frederiksen,
2010; Frederiksen et al., 2012; Kitsios et al., 2012) combine eddy
viscosity and a stochastic backscatter to represent the unresolved
scales in idealized models of the atmosphere and ocean. The
approach is tested in spectral space by forcing a truncated version
of the model, following early ideas of Kraichnan (1959). The kinetic
energy spectrum of the parametrized truncated model is shown to
improve compared to the unparameterized case. Berloff (2005b)’s
approach attempts to mimic the localized forcing as a temporally
and spatially correlated stochastic process producing jet rectifica-
tion. Brankart (2013) introduces a stochastic model to reproduce
the density fluctuations in the equation of state for an ocean
GCM improving the large-scale flow.
When building a stochastic parameterization, similarly to the
deterministic case, one needs to estimate the parameters associ-
ated with the stochastic forcing such as its temporal and spatial
correlations. For example, Penland and Sardeshmukh (1995) and
Zanna (2012) consider non-linear sub-grid scales processes as
white Gaussian noise in examining inverse models of sea-surface
temperature fluctuations in the Pacific and Atlantic, respectively.
Farrell and Ioannou (2003, 2007) consider Gaussian white noise
to represent the unresolved scales arising from atmospheric jet
instability. However, the use of Gaussian distributions as forcing
of non-Gaussian systems has been shown to lead to quantitative
discrepancies in the system’s response (Franzke et al., 2007; Ring
and Plumb, 2008; Cooper and Haynes, 2011). Gaussian distribu-
tions, augmented with non-Gaussian moments, are considered
for a stochastic backscatter process and implemented in various
studies (Frederiksen and Davies, 1997; O’Kane and Frederiksen,
2008).

Statistical properties of the surface mesoscale eddy field can be
analyzed using Altimetry data (Hughes et al., 2010) or floats
(LaCasce, 2008). While the observing system is improving, ocean
observations remain sparse, and it is difficult to derive quantitative
models for temporal and spatial mesoscale eddy forcing solely
from observed data. An alternative approach, similar to Shutts
and Palmer (2007), is to use high-resolution models that resolve
mesoscale eddies as estimates of truth and conditional probability
distribution functions as the base of our stochastic parameteriza-
tion (e.g., Khouider et al., 2003; Crommelin and Vanden-Eijnden,
2008). All parameters and relationships are assessed by using the
data from high-resolution models to inform the choices of the
parameterization.

In the present study, we perform coarse-grained budgets of
high-resolution potential vorticity using a coarse-graining length
scale representative of current climate model grids. In Section 2
and 3, we present the coarse graining procedure, based on integra-
tions of a quasi-geostrophic model in a double gyre configuration
then analyze the structure and strength of the mean and fluctua-
tions of the coarse-grained mesoscale eddy forcing. In Section 4,
using estimates of the strength of these fluctuations as a function
of the ensemble-mean parameterized tendency, we look for a func-
tional relationship between the transient mesoscale eddy forcing
and the resolved variables for a possible (deterministic) parame-
terization. The physical interpretation of the functional form is dis-
cussed in the context of the theory of the sub-grid scales. In
Section 5, we analyze the relationship between the transient eddy
forcing and the large flow using conditional probability distribu-
tion functions in addition to the dependence on resolution, strati-
fication, forcing and sub-grid scale viscosity. We conclude in
Section 6.
2. Model description and coarse graining

2.1. 3D quasi-geostrophic potential vorticity model

The model used in the present study, PEQUOD, solves the three-
dimensional baroclinic quasi-geostrophic (QG) potential vorticity
equation in the presence of forcing and dissipation on a beta plane
in a square basin with size L ¼ 3840 km (e.g., Berloff, 2005b,a). The
potential vorticity (PV) q is given by

q ¼ r2wþ byþ @

@z
f 2
0

N2

@w
@z

� �
; ð1Þ

where f ¼ f0 þ by is the planetary vorticity, r ¼ @
@x ;

@
@y

� �
the hori-

zontal gradient, N ¼ � g
q

dq
dz

� �1=2
the Brunt–Väisälä buoyancy fre-

quency of the mean density stratification and w the



Table 1
Model parameters.

Parameter High-resolution model Coarse-resolution model

Dx Resolution 7.5 km 30 km
m Viscosity m ¼ 50 m2 s�1 ~m ¼ 200 m2 s�1

LRo
⁄ Rossby Radii of deformation (40,23) km (40,23) km

U Velocity scale,
ffiffiffiffiffiffiffiffiffi
EKE
p

0:21 m s�1 0:12 m s�1

Re ¼ ULRo
m

Reynolds number 174 24

f0 Planetary vorticity at mid-y 10�4 s�1 10�4 s�1

b df=dy 2� 10�11 m�1 s�1 2� 10�11 m�1 s�1

g gravity 9:8 m s�2 9:8 m s�2

g0 Reduced gravity ð0:034;0:018Þm s�2 ð0:034;0:018Þm s�2

r Bottom drag 4� 10�8 s�1 4� 10�8 s�1

s0 Wind stress 0:3 N=m2 0:3 N=m2

q0 Reference density 103kg=m3 103 kg=m3

⁄ 1=L2
Ro ¼ k where k are eigenvalues of the equation @z

f 2
0

N2 @zw
� �

¼ kw.

1 The bottom dissipation is omitted only for simplicity but is still part of the coarse-
graining procedure.
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streamfunction derived from the non-divergent velocity u, such

that u ¼ � @w
@y ;

@w
@x

� �
. While the diapycnal velocity w vanishes, the

vertical extent of the fluid is included. The model is composed of
three isopycnal layers with thicknesses Hm with m ¼ 1;2;3 (m ¼ 1
upper, m ¼ 2 middle and m ¼ 3 bottom).

The prognostic equation solved for each layer m is given by

Dq
Dt
¼ @q
@t
þ u � rq ¼ Dþ F: ð2Þ

The dissipation D ¼ mr4w� rr2wdm;3 where the first term is a
fourth-order term equivalent to Laplacian viscosity, with viscosity
coefficient m, acting to dissipate small scale enstrophy (q2). The sec-
ond order term, present only in the bottom layer (m ¼ 3), paramet-
rizes the presence of an Ekman layer with a bottom drag coefficient
r.

The forcing F applied to the upper layer (m ¼ 1) is the curl of the
wind stress s:

Fðx; yÞ ¼ r � sð Þz
q0H1

dm;1 ¼
�s0

0:92p
Lq0H1

sin py
gðxÞ ; y 6 gðxÞ;

s0
2p

0:9Lq0H1
sin p½2y�gðxÞ�

L�gðxÞ ; y > gðxÞ;

(
ð3Þ

where gðxÞ ¼ L=2þ 0:2ðx� L=2Þ and q0 is the reference density.
In the present study we use primarily three different model

outputs:

� The first set of data is the output of the QG model at an eddy-
resolving horizontal resolution of 7:5 km (see Table 1), wind
strength s0 ¼ 0:3 N=m2, viscosity coefficient m ¼ 50 m2=s, and
layer thicknesses ðH1;H2;H3Þ ¼ ð250 m;750 m;3000 mÞ. The
density differences across the layer interfaces are 2:3688 kg=m3

and 1:2538 kg=m3 such that the associated Brunt–Väisälä
frequency are N ¼ 6:82� 10�3 s�1 and 2:56� 10�3 s�1.
� The second set of data is the coarse-grained (spatially averaged)

output of the high-resolution run, down to an eddy-permitting
resolution of 30 km (see Section 2.2). This coarse-grained out-
put represents the ‘truth’ - defined as the output that a
coarse-resolution model with horizontal resolution of 30 km
and an adequate eddy parameterization should attempt to
reproduce.
� The third set of data is the output of the QG model at an eddy-

permitting resolution of 30 km, with the same parameters as
the high-resolution model except for an increased viscosity
coefficient of ~m ¼ 200 m2=s. The output of the unparametrized
coarse-resolution model is mainly used as a reference solution
in order to analyze the discrepancies between this run and
the high-resolution model output.
The length of the integrations from rest to statistically steady
state is 410 years. All simulations presented are numerically con-
verged and are solved using centered-leapfrog with RAW filter
(Williams, 2009) and a modified Arakawa advective scheme which
conserves energy but not enstrophy (Arakawa, 1966). Additional
experiments using different numerical schemes led to similar sta-
tistics to those presented in the following sections. All parameters
for these runs are given in Table 1. Fig. 1 shows the statistically
steady state streamfunction w in the upper layer for the eddy
resolving run (panel a) and the coarse resolution model (panel
b). The most striking difference between the runs is the absence
of a strong eastward flowing jet in the coarse-resolution model
mainly due to the increased viscosity and the lower Reynolds
number.

2.2. Coarse-graining of the high-resolution model: equations and
output

The goal of our study is to deduce a parameterization of ocean
mesoscale eddies using the output of a high-resolution model at
7:5 km as the truth by coarse-graining its equations and output
to mimic the output and equations of a coarser-resolution model
at a resolution of 30 km (Berloff, 2005b,a; Duan and Nadiga,
2007). Let us consider the QG potential vorticity equation (Eq.
(2)) at each grid-box i of the high-resolution model within a
coarse-resolution grid box n given by1

@qn;i

@t
¼ �r � ðun;iqn;iÞ þ Fn;i þ mr4wn;i: ð4Þ

Eq. (4) is coarse-grained for each layer by convolving the high-res-
olution output with a constant window function of width 30 km as
schematically illustrated in Fig. 2(a) (Murdoch and Bedeaux, 1994;
Khouider et al., 2003; Shutts and Palmer, 2007), equivalent to a
weighted average over all fine-grid cells within a coarse-grid cell
of 30 km. Each coarse-grid cell contains a given number of fine grid
boxes with integers n and i indexing the coarse- and fine-grid cell
numbers, respectively. The value of any physical variable, e.g., w,
in the ith fine-grid cell lying within the nth coarse-grid cell is
denoted by wn;i and represents a grid-point value in the eddy-
resolving model at Dx ¼ 7:5 km horizontal resolution. The coarse-
grained field wn, denoted with an overbar, is given by

wn ¼
XI

i¼1

Wn;iwn;i; ð5Þ



Fig. 1. Statistically steady state streamfunction w for the model runs at horizontal resolutions of (a) 7.5 km (eddy resolving model) and (b) 30 km (eddy permitting model).
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Fig. 2. (a) Schematic of the coarse-graining (spatial Reynolds averaging) procedure. (b) Statistically steady state streamfunction for the high-resolution model output coarse-
grained to 30 km highlighting dynamically different regions for analysis purposes.

2 The correction term arising from the discretization of the potential vorticity is
@tðr2w�r2wÞ.
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where Wn;i are the equal and constant weights (except near the
boundaries) assigned to the different fine-grid cells such that
Wn;i ¼ 1=I, where I ¼ 16 is the number of fine-grid cells within a
coarse-grid cell of 30 km. Note that the coarse-graining, hence the
overbar, applies only to horizontal variables and operators. No
coarse-graining is applied to the temporal and vertical variables
(hence no overbar is used for vertical and temporal derivatives).

Using Eq. (5), the coarse-graining of Eq. (4) leads to
@�qn
@t ¼ �r � ðunqnÞ þ mr4wn þ Fn. Assuming that the viscosity in the
high-resolution and low-resolution models will differ, we introduce
a low-resolution dissipation coefficient ~m. By adding the coarse-res-
olution advective and dissipation terms,r � ðun�qnÞ þ ~mr4wn, to both
sides of the equation we obtain an equation for the coarse-grained
output given by

@�qn

@t
þr � ðun�qnÞ ¼ r � ðun�qnÞ � r � ðunqnÞ þ mr4wn � ~mr4wn

h i
þ ~mr4wn þ Fn; ð6Þ

where r, is the gradient operator acting on the low-resolution
fields.

For convenience, let us drop the subscript n and rewrite

@�q
@t
þr � ð�u�qÞ ¼ S� þ ~mr4wþ F; ð7Þ

where the eddy source term S� is given by

S� ¼ r � ð�u�qÞ � r � ðuqÞ þ mr4w� ~mr4w: ð8Þ

The coarse-graining procedure gives rise to an additional ‘source’
(or forcing) term in the QG equation – the divergence of a Reynolds
stress. The eddy source term S� is composed of the coarse-grained
high-resolution advection r � ðuqÞ; the coarse-resolution advection
r � ð�u�qÞ; the coarse-grained high-resolution viscosity mr4w, and the
coarse-resolution viscosity ~mr4w. The eddy source term reflects
mainly the difference between the high-resolution advection and
the coarse-resolution advection and therefore represents the tran-
sient mesoscale eddies and their interaction with the large-scale
flow (Berloff, 2005b,a; Duan and Nadiga, 2007). Further details on
the coarse-graining methodology are given in Appendix A, including
the treatment of boundary conditions and the non-commutativity
of the Laplacian operator which introduces a correction to the eddy
source term.2

By coarse-graining the high-resolution model output, we can
compare some of the general properties of the high-resolution,
coarse-grained and coarse-resolution data. The steady state
coarse-grained streamfunction field w, is shown in Fig. 2(b). The
steady state coarse-grained output presents the same large-scale
features as the high-resolution output, such as the eastward-flow-
ing jet but with features at scales smaller than 30 km being
smoothed out. However, the high-resolution and coarse-grained
output have markedly different kinetic energy power spectra as
a function of total wavenumber (Fig. 3(a)). The power spectrum
of the coarse-grained output increasingly diverges from the
high-resolution output as the wavenumber increases. In the
ð200 kmÞ�1 to ð60 kmÞ�1 range, the high-resolution kinetic energy
power spectra obeys a power-law of k�2:6 while the spectra of the



Fig. 3. Kinetic energy (a) power spectral density and (b) transfer coefficients for the high-resolution (black), coarse-grained (grey), and low-resolution (dashed grey) models

as function of total wavenumber K. The total wavenumber is given by K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
, where k and l are the zonal and meridional wavenumbers, respectively.
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coarse-grained output follows a much steeper power-law of k�3:6.
The coarse-graining procedure acts as a smoother at large wave-
numbers. The power spectrum of the coarse-resolution (30 km)
run has a much lower kinetic energy at all wavelengths compared
to the high-resolution run but its power spectrum follows a notice-
ably shallower power-law of k�2:3 in the range ð200 kmÞ�1 to
ð60 kmÞ�1 compared to the coarse-grained output. A steeper spec-
trum for the low resolution model can be achieved by increasing
the viscosity coefficient. The transfer coefficients (Qiu et al., 2008;
Scott and Arbic, 2007) which give a measure of the transfer of kinetic
energy between spatial scales are shown in Fig. 3(b). Despite the dif-
ferent kinetic energy spectrum of the coarse-grained model output
compared to the high-resolution model spectrum, the transfer of
energy between the different scales is preserved (black and grey
curves), unlike for the coarse resolution model (dashed-grey).
The main attempt will be to parametrize the eddy source term as
function of the resolved scales such that the energy transfer
can be represented in the coarse-resolution model (Berloff et al.,
2007b).

3. Properties of the eddy source term

3.1. Spatio-temporal features of the eddy source

The coarse-grained eddy source term and its components are
calculated from the high-resolution output which is saved every
hour for the total length of the integration. Most of the analysis
is be done by using 10 years of daily output of S� which we have
tested and found sufficient to capture the behavior of S� keeping
the size of the output manageable.
Fig. 4. (a) Ten-year averaged coarse-grained output in the upper layer of the eddy sourc
Burbidge et al., 1988) is used owing to the great variability in magnitude of S� , (b) Zonal c

(c) Standard deviation of the eddy source term,
ffiffiffiffiffiffiffiffiffiffiffi
hS�02i

q
.

Fig. 4(a) shows the spatial pattern of the eddy source term S�

averaged over 10 years in the upper layer. The eddy source S� has
a complex spatial structure with alternating signs in the meridio-
nal and zonal directions, and strongest amplitude in the vicinity
of the western-boundary currents and the meandering jet. A simi-
lar pattern is observed in the other layers but with a much reduced
amplitude as the eddies and the jet are surface intensified. The
along and across-jet succession of alternating signs pattern of the
eddy source term evolves following the meanders of the jet
(Fig. 4). A positive (negative) source term acts to create (destroy)
potential vorticity. Therefore the action of S� is to redistribute PV
in the region of the jet, leading to alternating regions of increased
and decreased PV gradient. For simplicity, the eddy source term
(Eq. (8)) can be approximated by the divergence of the eddy flux
F ¼ �uqþ �u�q, such that S� � r �F . An effective non-divergent
eddy-induced velocity �u� can be obtained such that
S� � r � ð�u�HÞ where H depends on the components of r�q and
F (Vallis, 2006, pp 311–312, 428). The time-mean zonal compo-
nent of the eddy-induced advective velocity �u�, shown in
Fig. 4(b), accelerates the core of the jet and decelerates its flanks,
therefore acting to sharpen the jet (Berloff et al., 2007a;
Waterman and Jayne, 2011; Waterman and Hoskins, 2013). The
velocity just north and south of the core of the jet can potentially
explain the transport of eddies being shed off the jet and partici-
pating in the recirculation (merging with the jet itself). The merid-
ional component (not shown) acts to intensify the western
boundary currents.

Snapshots of S� (panel a) and the terms defining it (panels b–d)
for the upper layer are shown in Fig. 5. Figs. 5(b) and (c) show that
the nonlinear terms related to the coarse-resolution advection
e term S� defined in Eq. (8). An inverse-hyperbolic-sine color-scale (Johnson, 1949;
omponent of the effective advective velocity �u� provided by the source term S� , and
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r � ð�u�qÞ and the coarse-grained high-resolution advection r � ðuqÞ
are dominant. Each term is up to one order of magnitude larger
than the source term itself in the vicinity of the jet and the source
term is given by the interference between the two patterns of
advection. This result is expected since the eddies are derived from
these nonlinear terms and their difference represents the impact of
the unresolved subgrid-scales onto the resolved flow. The small-

scale dissipative terms mr4w and ~mr4w tend to keep the same sign
above and below the jet (not shown) and their sum is at least one
order of magnitude smaller than the source term. Fig. 5(d) shows
the contribution of the viscous terms and of the correction term,
owing to the lack of commutativity between coarse-graining and
spatial derivatives (this term has very little importance physically
but is included for completeness).

3.2. Fluctuations and probability distribution functions of the eddy
source term

A measure of the temporal vacillations of the eddy source
term at each location can be described by its averaged temporal
variance. Let us denote hXi as the temporal or ensemble average
of a variable X and X0 ¼ X � hXi as the anomaly with respect to
the average. The averaged temporal variance of the eddy source
term is defined by hS�02i ¼ hðS� � hS�iÞ2i and is shown in Fig. 4(c).
Clearly, the western boundary currents and the jet exhibit high
variance. The eddy source term exhibits spatial and temporal
correlations with timescales of several days in the regions with
large eddy activity, mostly the meandering jet and western
boundary (Berloff, 2005b). The importance of the spatial and
the temporal patterns and correlations of S� have been analyzed
and discussed by Berloff (2005b,a) and Berloff et al. (2007a) in
Fig. 5. Snapshots of (a) coarse-grained output of the eddy source term S� and its individ
advection, and (d) viscous terms and discretization-correction term (the latter described
QG models and Li and von Storch (2013) in an ocean GCM.
Those studies point out that the interaction between the steady
eddy source term hS�i and its fluctuation S�0 leads to a rectifica-
tion of the eastward jet and a weakening of the gyres. Specifi-
cally, hS�i is mainly responsible for the weakening of the gyres
and of the western-boundary current(s), and for the meandering
of the jet, while jet rectification is enhanced by S�0. The effect of
the eddy source term, S� ¼ hS�i þ S�0, is more than just a simple
superposition of the effects of mean and the anomalies, owing
to the non-linearity of the system. Therefore the mean eddy
source term hS�i and its temporal fluctuations S�0 are essential
features that ought to be reproduced in a parametrization of a
coarse-resolution model in order to approximate the high-reso-
lution flow.

The probability density functions (PDFs) for the eddy source
term S�;PðS�Þ, calculated after the flow has reached a statistically
steady state using binning and histograms, are shown in Fig. 6.
We consider three different regions in the basin – A: the jet, B: near
maximum of the gyre strength, C: the interior, identified in
Fig. 2(b). Dynamically different regions have vastly different
shapes and widths of PDFs as expected from Fig. 4. All PDFs are
centered around zero and shaped as delta functions in quiescent
regions (regions A and B). In the core of the jet (region C), the
PDF calculated clearly has a non-Gaussian shape, typical signature
of intermittency, with exponential tails (Majda and Kramer, 1999;
Bourlioux and Majda, 2002). The shape of the basin-wide PDF away
from the origin is fairly similar to the PDF calculated in the jet
region but its amplitude is reduced as we are sampling the regions
of low S� more often than when considering the jet region alone.
Near the origin it exhibits a narrow peak observed in regions for
which the eddy source term is weak.
ual components, (b) coarse-grained high-resolution advection, (c) coarse-resolution
in details in Appendix A).
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3.3. Building the parameterization

It was postulated that a stochastic approach could better
approximate the effect of the transient eddies on the mean flow,
potentially capturing the upscale energy cascade and turbulence
backscatter processes (Leith, 1990; Mason and Thomson, 1992)
while representing the subgrid scale variability ignored in deter-
ministic downgradient parameterizations (Frederiksen and
Davies, 1997; Berloff, 2005b; Kitsios et al., 2013).

If we were to use the probability distribution PðS�Þ at all points
and times as a stochastic parametrization, we would potentially
lose the spatial and temporal correlations of the source term with
the resolved scales, and therefore some essential features of
dynamically different regions. It is possible to introduce the spa-
tio-temporal correlations in the stochastic parameterization by
explicitly making the probability distribution conditional on the
location/coordinates ð�x; �y; zÞ, i.e. PðS�jð�x; �y; zÞÞ. This approach would
be equivalent to that taken by Berloff (2005b) and Berloff et al.
(2007a) in which the temporal and spatial correlations of the sto-
chastic forcing are incorporated based on the results of the high-
resolution runs. Making the PDFs with a spatial and/or temporal
explicit dependence would involve the search of functions to
approximate the spatio-temporal variability of source term (due
to the different PDFs in different dynamical regions) and the fitting
of a large number of parameters, leading to likely costly computa-
tions. Moreover, it would be heavily dependent on the specific
model set-up, potentially requiring the run of a high-resolution
model for each new set-up to diagnose PðS�jð�x; �y; zÞÞ and finally it
would break the specific frame-invariance3 of the QG equations
under a different frame of reference.

A different approach to reproduce the spatial and temporal cor-
relations in the statistical variations of the eddy source term S� is to
find a functional Rð�qÞ of the resolved-scale prognostic variable �q
that has a high correlation with the diagnosed eddy source term.
Once a suitable functional Rð�qÞ is found, one can use a conditional
probability density function (cPDF) expressing the statistical
3 Definition of frame-invariance: The equations of motion or the quantitative
representation of physical phenomena remain unchanged when the phenomena are
observed under different conditions (e.g., when the observer is situated in an
accelerating or a rotating frame of reference). The invariance refers to both space and
time changes in the observer’s frame of reference.
variations of S� at a single point ð�x; �y; zÞ as a function of the value
of the resolved functional Rð�qð�x; �y; z; tÞÞ at that point, PðS�jRð�qÞÞ.
In other words, the probability distribution of the variable S� is
updated after observing the realization of the conditional variable
Rð�qÞ, namely after the information that the variable Rð�qÞ has
taken a particular value r. The updated probability distribution of
S� is then called the conditional probability distribution of S� given
Rð�qÞ ¼ r;PðS�jRð�qÞÞ.4 We refer to Rð�qÞ as the conditional variable.
The statistical variations of the eddy source term, S�, thus become
functions of the coordinates only implicitly, via the coarse-scale
functional Rð�qð�x; �y; z; tÞÞ, decreasing the number of parameters
needed compared to a direct fitting for the reconstruction of
PðS�jð�x; �y; zÞÞ. Moreover, if the conditional variable Rð�qÞ is frame-
invariant, the probability PðS�jRð�qÞÞ is also frame-invariant by
construction.

In the present approach, we wish to predict the mean and var-
iance of the eddy source term and therefore we require a high cor-
relation, but not necessarily a linear dependence, between S� and
Rð�qÞ (Section 4). The conditional PDFs allow us to statistically pre-
dict a value of the eddy source term S� knowing the value of Rð�qÞ.
The statistical relationships between S� and Rð�qÞ are then analyzed
as function of coarse-resolution parameters and forcing (Section 5).
4. Relationship between the eddy source term and the resolved
coarse-grained flow

To construct the conditional PDFs, PðS�jRð�qÞÞ, we impose math-
ematical and physical constraints to find an appropriate relation-
ship between the eddy source term S� and some functional Rð�qÞ
of the resolved-scale prognostic variable �q.
4.1. A conditional variable linked to fluids of second grade and higher
order strain rate

The conditional variable Rð�qÞ should be related to the turbulent
Reynolds stress which appears as the eddy source term after the
coarse-graining of the PV equation. We therefore look for condi-
tional variables which are the divergence of a stress and have high
correlations with S�. We impose frame-invariance which is
obtained by construction as long as the parametrization depends
on PV solely through scalar functions of �q, the Lagrangian deriva-
tive D=Dt and the operator r.

A linear dissipative conditional variable of the form Rð�qÞ ¼ r2�q
leading to PV mixing (Rhines and Young, 1982a; Treguier et al.,
1997) shows poor correlation with the eddy source term, which
is not surprising as turbulence is not only dissipative. The order
of the Laplacian can be increased leading to hyperviscous function-
als, such as r4�q and r6�q, which have been proposed as a scale-
selective dissipation concentrated near the grid-scale (Macvean,
1983; Graham and Ringler, 2013; Kitsios et al., 2013). The correla-
tion between the source term and the hyperviscous terms
increases as the order of the Laplacian gets higher but still remains
very weak with large spatial variations. Various other forms of the
conditional variable such as (Gent and McWilliams, 1990, GM
hereafter) or barotropic and baroclinic shears were used, all lead-
ing to poor correlations or widely spatially and temporally varying
correlation coefficients. Some traditional closures and their corre-
lations with the eddy source term are presented in Appendix B.

An alternative to the linear dissipative terms is to incorporate
spatial and temporal information of the eddy-mean flow interac-
tion using the Lagrangian derivative of the strain rate (the Eulerian
time-derivative is ruled out as it breaks frame-invariance) and/or
4 The procedure to calculate the conditional probability distribution functions is
explained in Section 5.1.



Fig. 7. (a) Ten-year average of the conditional variable, r2 D�q
Dt ¼ r2Dt �q, (b) snapshot of the conditional variable jr2Dt �q with j ¼ �ð15 kmÞ2, and (c) standard deviation of

jr2Dt �q.

6 Those studies described the behavior of turbulence by regarding it as a
viscoelastic medium acting on a mean flow field. Moreover, note that the Rivlin
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non-linear terms.5 The Lagrangian derivative introduces spatio-tem-
poral information as it involves a dependence on the near history of
the water parcel. A choice of Rð�qÞ which takes the form of the (hor-
izontal) divergence of a stress r � ðvectorÞ, includes the Lagrangian
derivative, and does not break the frame invariance of the QG equa-
tion is given by

Rð�qÞ ¼ r � rD�q
Dt

: ð9Þ

Fluid theories for which the stress includes a time derivative of
strain-rate tensor are referred to fluids of second grade or ‘Rivlin–
Ericksen fluids’ (Rivlin and Ericksen, 1955; Dunn and Fosdick,
1974; Truesdell and Rajagopal, 2009). The Rivlin–Ericksen stress is
defined as the higher rate of change of deformation of the fluid
relative to the linear Newtonian viscous term (fluids of first grade)
and was derived to model the appearance of normal stresses in
non-Newtonian fluid problems. The Rivlin–Ericksen stress in the
momentum equation is given by 2a1

DA
Dt þr�uTA þAr�u
� �

þ
4a2A

2, where A ¼ 1
2 ðr3 �uþr3 �uTÞ;r3 is the 3D gradient operator,

and a1;a2 are normal-stress moduli and are properties of the mate-
rial. The exact derivation of the Rivlin Ericksen stress for the quasi-
geostrophic approximation can be found by using a Rossby-number
power expansion of the constitutive momentum equations for flu-
ids of second grade; however it is beyond the scope of this work.
We opt for a simple analogy to explain the relationship between
Rð�qÞ and the Rivlin–Ericsken stress in the QG potential vorticity
equation. If the Rivlin–Ericksen stress was written in terms of
potential vorticity instead of velocity and the non-linear term was
negligible, the expression for the Rivlin–Ericksen stress would then

take the form a Dr�q
Dt þr�uTr�q

� �
¼ ar D�q

Dt. The latter expression (r D�q
Dt)

being the stress used for our conditional variable defined in Eq. (9).
The form of the conditional variabler � r D�q

Dt is therefore related
to second grade fluids and the Rivlin–Ericksen stress. The analogy
between second grade (non-Newtonian) fluids and Newtonian tur-
bulent flows is not new and was based initially on the appearance
of secondary motions (recirculation) and normal-stresses acting on
the flow in both instances (Rivlin, 1957). Since Rivlin, 1957, a large
number of idealised studies have considered describing the
dynamics of turbulent shear flows by proposing a non-Newtonian
model for the apparent stress, induced by the fine-scale turbu-
lence, on the large scale motion that required a viscosity depen-
dent on the rate of strain (Liepmann, 1962; Crow, 1967; Lumley,
5 As noted by Speziale (1987), if the turbulent stresses are represented by a non-
linear quadratic function of the strain rate with dimensions ½T�2�where T is time, then
dimensional consistency requires us to include a time derivative of the strain rate
which has the same dimensions.
1970; Speziale, 1987).6 Continuum models for second grade fluids
are presently used in different applications such as glacier-ice
dynamics and geophysical fluid dynamics (e.g., McTigue et al.,
1985; Holm and Nadiga, 2003; Holm and Wingate, 2005; Riesen
et al., 2010). For example, Foias� et al. (2001) showed that the Euler
a-model, used as a nonlinear dispersion model to represent the
interaction between the unresolved and resolved scales, is mathe-
matically identical to the inviscid second grade fluid equations. Fur-
ther discussion to address the similarities between the QG version of
Lagrange-averaged Navier–Stokes-a (LANS-a) model and our condi-
tional variable are discussed in Appendix C. In the same section, we
describe the conditional variable as a combination of the strain rate
r�uTr�q and the Lagrangian rate of change of the PV gradient Dr�q

Dt . The
decomposition is described, similarly to the Okubo–Weiss descrip-
tion (Okubo, 1970; Weiss, 1991) of the stress related to the normal
and shear components of strain and the relative vorticity, as acting
to rectify the flow by strengthening and rotating the PV gradient.

4.2. Spatio-temporal features of the conditional variable

A ten-year average of the conditional variable r2 D�q
Dt is shown in

Fig. 7(a). The similarities between the time-averaged Rð�qÞ ¼ r2 D�q
Dt

and eddy source term (shown in Fig. 4(a)) are striking; however,
the conditional variable is not as smooth as the eddy source term.
Given that the time-averaging procedure can reduce the potential
correlation between the eddy source and r2 D�q

Dt, a snapshot of the
spatial pattern of the conditional variable is shown in Fig. 7(b).
The conditional variable is multiplied by a constant coefficient
j < 0. When compared with the snapshot of the eddy source term
S� in Fig. 5(a), we again see strong similarities between the two
patterns although near the western boundary some discrepancies
are apparent. The similarities between the S� and Rð�qÞ ¼ r2 D�q

Dt
are further confirmed by the very high and positive spatial Pearson
correlation of the eddy source term with �r2 D�q

Dt shown in Fig. 8(a),
except near the boundaries where we observe a strong anti-corre-
lation. The differences between the regions near the boundaries
and the ocean interior can be attributed either to the altered
coarse-graining weights near the walls (Fig. A.16) or the complex
dynamics involved near the boundaries which is not captured by
the conditional variable, r2 D�q

Dt, alone. The variance of the
Ericksen description of the normal-stress and visco-elasticity in polymers takes into
account the effects produced by the preferential orientations of the polymer
molecules under shear. Rivlin (1957) pointed out that eddies in a turbulent flow
also exhibit preferential orientations under shear (Marshall et al., 2012), leading to
further analogy between Newtonian turbulent and non-Newtonian visco-elastic
fluids.



Fig. 8. (a) Time-averaged local Pearson correlation coefficients between S� and �r2 D�q
Dt (the correlation coefficient at each grid-box varies by less than 5% over 10 years) and

(b) auto-correlation of the eddy source term (black) and the conditional variable (blue). Also on the same panel decorrelation time-scales of the eddy source term with the
conditional variable (dashed grey) and with the divergence of the eddy fluxes, defined using Reynolds temporal averages (red). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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conditional variable (Fig. 7(c)), similarly to the eddy source term
variance (Fig. 4(c)), is concentrated in the jet region. However
again the fluctuations near the boundaries are not well captured.

Our search for a conditional variable is invoking a local and
instantaneous relationship between the eddy source and the con-
ditional variable (both calculated at the same location and time-
step). Various functional forms considering remote and delayed
variables, while still enforcing the basic mathematical constraints
such as frame-invariance and stress-divergence, were tested but
showed no better correlation than the one demonstrated in
Fig. 8(a). Our conditional variable is still non-local to some extent
as it uses information from the Lagrangian derivative of �q (follow-
ing the fluid parcel), and from neighboring points owing to the
Laplacian operator. The claim of non-locality can be further verified
when implementing the functional Rð�qÞ ¼ r2 D�q

Dt as a parameteri-
zation in a coarse resolution version of the model. Information
from further remote locations or from the propagation of Rossby
waves (for example) is probably not well represented by this con-
ditional variable, nor are boundary layer processes.

By introducing the Lagrangian derivative for the expression of
the conditional variable, we implicitly assume that the turbulent
processes are Markovian with infinitesimal memory.7 Kraichnan
(1959) and Frederiksen (1999) have shown that subgrid scale turbu-
lence in spectral space is non-Markovian with finite-time correlation
equivalent to the decorrelation time (memory) between the subgrid
tendency and the resolved field (Kitsios et al., 2012). The implicit
Markovian approximation is used in our study for simplicity. How-
ever the decorrelation time of the eddy source term is well captured
by the large-scale conditional variable chosen, �r2 D�q

Dt . Therefore we
feel that the appropriate time-scales between the subgrid scales and
the large scales are adequately represented and that the implicit
Markovian approximation does not ignore the finite-time decorrela-
tion necessary to represent the subgrid scale turbulence. For exam-
ple, Fig. 8(b) shows the autocorrelation of the eddy source term in
the jet region (black curve) in addition to the autocorrelation of
the conditional variable (blue curve). The autocorrelation of the con-
ditional variable decays slightly faster than that of the eddy source
term but the overall behavior is well captured. Furthermore, the dec-
orrelation time of the eddy source term with the conditional variable
(dashed grey) is several days and higher than the correlation of the
eddy source term with the temporal Reynolds averaged eddy fluxes
(red) so that the temporal correlations are not ignored.
7 A process is defined as a Markovian process if its future state at time t þ dt can be
evaluated solely from its present state at time t and its most recent history at time
t � dt.
4.3. Conditional variable as forcing of PV tendency

As mentioned in Section 4.2, the conditional variable, r2 D�q
Dt, is

multiplied by a constant coefficient j < 0 which is required to
reproduce to appropriate sign of the eddy source term in the ocean
interior. Since the spatial pattern and temporal variability of the
source term is extremely well represented by Sp ¼ jr2 D�q

Dt, with a
constant and negative j over the entire domain, Sp could be viewed
as a local deterministic parameterization and therefore replace the
source term in Eq. (7). A coarse-resolution parameterized model
would then take the form

Dt�q ¼
@�q
@t
þr � ð�u�qÞ ¼ jr2Dt�qþ ~mr4wþ F; ð10Þ

leading to

1� jr2
� �

Dt�q ¼ ~mr4wþ F: ð11Þ

Since j is negative, the operator acting on the PV tendency and
advective terms behaves as a ‘‘rougher’’ (instead of a smoother if
j was positive) increasing total forcing in the PV equation at small
scales.

To further test and understand the meaning of the negative sign
of j, let us consider the parametrized PV equation in spectral
space. The spatial Fourier transform of any function f ðx; tÞ is

denoted by bf ðK; tÞ, where x is the position vector and K is the total

wavenumber such that K ¼j K j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
. The Fourier transform

of Eq. (10) is therefore given by

dDt�q ¼ 16p4~mK4bw þ bF � 4p2K2jdDtq; ð12Þ

where we use crf ¼ 2piKbf and omit the argument ðK; tÞ for
convenience.

By considering j < 0 and introducing the (non-dimensional)
normalized wavenumber ~K ¼ K

ffiffiffiffiffiffi
jjj

p
, we obtain

dDt�q ¼16p4~mK4bw þ bF þ 4p2K2jjjdDtq;

¼16p4~mK4bw þ bF þ 4p2 eK 2dDtq;

¼ 1

1� 4p2 eK 2
16p4~mK4 bw þ bFh i

: ð13Þ

If j ¼ 0, we recover the simple Fourier transform of the unparamet-
rized coarse resolution model equation. However for the non-van-
ishing negative j, the amplitude of the modified forcing in

spectral space, 1� 4p2 eK 2
� ��1

, is increasing as the normalized



Fig. 9. Eddy forcing in spectral space: (a) amplitude of the total forcing, ð1� 4p2 eK 2Þ
�1

, as function of the effective total wavenumber eK and (b) power spectrum of right-hand
side of Eq. (2) from numerical experiments at high and low resolutions as function of ~K.

10 PierGianLuca Porta Mana, L. Zanna / Ocean Modelling 79 (2014) 1–20
wavenumber eK increases, with an asymptote at K ¼ 2p
ffiffiffiffiffiffiffiffiffi
j j j

p� ��1

which is of similar scale to our grid-box size (see Section 5.3). There-
fore as postulated earlier, the total forcing (wind and dissipation) is
increased by our eddy parametrization at small spatial scales (high
wavenumbers) as shown in Fig. 9(a). Since we expect dissipation
to be predominant at high wavenumbers (while wind forcing acts
at large scales), the net effect of our parametrization is in general
to increase dissipation at small scales, similarly to Kraichnan
(1976) and other parameterizations derived in spectral space by
Frederiksen and colleagues (e.g., Frederiksen and Davies, 1997;
Frederiksen and Kepert, 2006; Zidikheri and Frederiksen, 2010).

The injection of eddy forcing at high wavenumbers in the PV
equation can also be shown in a numerical experiment in which
we evaluate the Fourier Transform of the right-hand side of the
QGPV equation (Eq. (2)) for the high and coarse resolution models
over one day. As initial condition, we use a snapshot of the high-
resolution model after reaching its statistical steady state with a
fully developed jet. After the initialization, the coarse resolution
model gradually looses the jet while the high-resolution maintains
it. The power spectrum (absolute value squared of the Fourier
transform) of the right-hand side of the coarse and high resolution
models are shown in Fig. 9(b). The ‘‘forcing’’ in spectral space of the
high resolution model is higher at high wavenumbers than that of
the coarse resolution model - the latter incapable of maintaining
the jet, perhaps owing to the weak forcing at high wavenumbers.
8 Eddy-eddy interactions are defined as the interactions between subgrid eddies
and transient resolved eddies but also as the subgrid–subgrid eddies interactions;
eddy-mean flow interactions are defined as the interactions between subgrid-eddies
and the resolved mean flow.
5. cPDFs for the RE parameterization: forcing, resolution and
stratification

5.1. Evaluation of conditional PDFs

To further investigate the relationship between the eddy source
term and the conditional variable, we turn to the conditional PDFs
described in Section 3.3 as the basis for our stochastic parametriza-
tion. Using Rð�qÞ ¼ r2 D�q

Dt, we construct the discretized versions of
the conditional PDFs from the coarse-grained output as follows:
(1) compute the extrema of Rð�qÞ over all points and times; (2)
select 100 bins equally divided between the extrema of
Rð�qÞ; ðD1Rð�qÞ; . . . c;D100Rð�qÞÞ; (3) Given a bin DjRð�qÞ, diagnose
the distribution (quantiles, moments,. . .) of the values of the source
term at all points and times at which Rð�qÞ assumes values within
the bin DjRð�qÞ; (4) the collection of these 100 PDFs, one for each
bin of the conditional variable Rð�qÞ, constitutes the cPDFs
PðS�jRð�qÞÞ. Therefore for each value of Rð�qÞ (or bin DjRð�qÞ) we
obtain a statistical distribution for values of the eddy source term
S�. Given the large amount of information contained in the cPDFs,
we collapse their representation onto a 2D plot to capture the
essential information. Fig. 10(a) shows the cPDFs of the eddy
source term S� conditional on the variable r2Dt�q for the upper
layer of the model, represented as a 2D grey-scale contour plot
for S� (y-axis) and Rð�qÞ (x-axis), the contours being 5% quantile
ranges of the cPDF, with their mean and standard deviation in
red and blue, respectively. The median of the cPDFs is the black
region and does not always correspond to the mean of the cPDFs,
meaning that the PDFs can be skewed as shown in Fig. 10(b).

The cPDFs for the second and third layers are similar to
Fig. 10(a) differing only in the magnitude of the eddy source term
and the conditional variable as both eddy activity and the mean
flow are diminished below the surface. There is a clear monotonic
correlation between the source term and the conditional variable:
as the magnitude of the conditional variable increases, so does the
eddy source term magnitude, confirming the high correlation seen
in Fig. 8(a). There are also large deviations from the mean, which
increase with the magnitude of the conditional variable, as
expected. For example, the spread in the standard deviation is
about 20% of the mean value for non-vanishing values of the con-
ditional variable. Therefore the distributions’ mean alone cannot
entirely represent the variability and fluctuations associated with
the eddy-eddy and eddy-mean flow interactions.8

Similarly to the fact that PDFs themselves are regionally depen-
dent so are the conditional PDFs – however the main reason to use
the conditional PDFs is so that the eddy source term is captured by
the large scale variable (which is implicitly a function of space and
time). Therefore, near the origin of Fig. 10, we are mostly sampling
the quiescent regions of the basin with low eddy activity (low val-
ues of the eddy source term and conditional variable) and less fre-
quently regions near the jet. Away from the origin, for high values
of the conditional variable, we are sampling exclusively regions
with high eddy activity (vicinity of the jet). The spread in the PDFs
is therefore not due to the inhomogeneities or the non-locality of
the cPDFs. The main features not captured by the conditional var-
iable and the cPDFs are (1) the grid cells near the viscous boundary
layers (including the western boundary) which are anti-correlated
with the conditional variable as shown in Fig. 8(a) and (2) the very
small values of the eddy source term.

5.2. Scalings: sensitivity experiments

We wish to provide a scaling for explaining and predicting the
moments of the cPDFs. The scaling for the cPDFs would then pro-
vide the basis for their reconstruction without the need to rerun



Fig. 10. (a) Conditional Probability Density Functions (cPDFs) for the eddy source term S� conditional on r2 D�q
Dt for the upper layer of the 30 km coarse-grained data. The grey

shading shows 5% quantiles increments of the conditional PDFs, the red and blue lines are the mean and standard deviation, respectively and (b) examples of cPDFs from
panel (a) for selected values of the conditional variable r2Dt �q. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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the high resolution model. The mean is key in a deterministic
parameterization and the fluctuations arising from the subgrid-
scale processes can be described by using the variance (or standard
deviation) and the high order moments and are essential to guide
the stochastic part of the parameterization. For example, Kitsios
et al. (2012) and Kitsios et al. (2013) show that the drain viscosity
coefficient and backscatter eddy viscosity coefficient (governing
the variance of the backscatter noise) proposed by Frederiksen
and Davies (1997) and Frederiksen (1999) follow scaling laws
which depend on resolution (truncation wavenumber), enstrophy
flux, Rossby wavenumber and energy range.

Several sensitivity experiments are carried out to identify how
the resolution, Reynolds number (wind forcing and dissipation),
stratification, subgrid scale parameterization of viscosity and
model configuration affect the characteristics of the cPDFs (in
QG). A total number of 12 numerical experiments are performed
in addition to the reference double gyre QG model run defined in
Section 2.1. The same configuration (at a resolution of 7:5 km) is
run using different Reynolds numbers, by changing both the wind
strength s0 and the viscosity coefficient m. The set of chosen values
for eight additional runs with varying Reynolds numbers
are s0½N=m2�; m½m2=s�

� �
= ½ð0:3;75Þ; ð0:3;100Þ; ð0:6;50Þ; ð0:6;75Þ;

ð0:6;100Þ; ð0:8;100Þ; ð0:8;150Þ; ð0:9;100Þ�. The stratification (or
equivalently the layer thicknesses) is modified compared to the
original run with s0½N=m2�; m½m2=s�

� �
¼ ð0:3;50Þ, a set of 2 addi-

tional runs with the following layer thicknesses were performed
ðH1;H2;H3Þ ½m� ¼ ð200;1200;2600Þ; ð300;800;3100Þ½ �. We per-
form one additional sensitivity experiment in which the viscous
dissipation is parametrized as a bottom-friction-like viscosity
given by �r0r2w. Lastly, we change the configuration of the QG
model from a closed basin to a reentering zonal channel setup of
meridional � longitudinal extent of 3840 km� 7680 km forced by
buoyancy flux (instead of wind). Note however that in QG, buoy-
ancy and wind are ultimately equivalent as forcing to the PV equa-
tion (but project differently onto the barotropic mode).

The outputs of these high-resolution runs are thereafter coarse-
grained, as explained in Section 2.2 and Appendix A, to resolutions
of 30 km (eddy-permitting), and 60 km and 120 km (non-eddy-
resolving). This variety of numerical experiments, while non-
exhaustive, still allows us to tackle different issues potentially aris-
ing regarding the dependence of our scalings (in QG) on the coarse-
graining size and resolution, model setup, Reynolds number, forc-
ing and subgrid parameterization.

We show that the main advantage of using a parametrization
based on the cPDF PðS�jr2Dt�qÞ with the conditional variable
r2Dt�q is that we actually do not need to run a preliminary high-
resolution run for diagnostics purposes, because the mean, spread,
and particular shape of the cPDF PðS�jr2Dt�qÞ can be simply
deduced from coarse-resolution model, namely forcing, resolution
and stratification.

5.3. Mean

The almost linear relationship between the mean l of cPDFs of
the eddy source term S�, which represents mean spatio-temporal
pattern of S�, and the conditional variable Rð�qÞ ¼ r2 D�q

Dt can be
assumed to take the form l ¼ jr2Dt�q. The proportionality coeffi-
cient j corresponds to the constant slope of the mean of the cPDFs
of S� with respect to the conditional variable r2Dt�q (red curve in
Fig. 10) such that j < 0 (as expected). The linear dependence
strongly suggests that a non-Newtonian second-grade model
underlines the main properties of the fluid at coarse scales, as dis-
cussed in Section 4.1. The cPDFs for a run with higher Re number
(wind forcing amplitude of s0 ¼ 0:8N=m2 and viscosity coefficient
m ¼ 100m2=s) are shown in Fig. 11(a), indicating that the linear
relationship between the mean of the cPDFs and the conditional
variable holds for a different strength of external forcing and
sub-grid scale dissipation. The linear relationship holds for all
coarse graining sizes (Dx ¼ 30;60;120 km) and for all other model
runs including runs in which the parameterization of viscous dissi-
pation is altered or when the model is configured as a periodic
channel with buoyancy forcing as shown in Fig. 11(b) and (c).

It is found that the value of j is independent of the model run or
its setup but scales with the coarse-graining size. Unlike a non-
Newtonian fluid in which the parameters for the Rivlin–Ericsken
stress are determined by the properties of the material, j is simply
determined by the scale of the grid-box. As discussed in Section 4.3,
the parameterization acts at high wavenumber and close to grid-
box size. From a dimensional relation, we assume that the influ-
ence of the eddies onto the mean flow is such that external forcing
and dissipation can to first order be neglected (a valid assumption
in the vicinity of the meandering jet) and assume that the effect of
the eddies is well approximated by the mean of the cPDFs
l ¼ jr2 D�q

Dt such that

D�q
Dt

	 

� ½j� r2 D�q

Dt

	 

; ð14Þ

leading to j � OðDx2Þ. We find that the proportionality coefficient j
increases with resolution or more precisely with the square of the
resolution length Dx. The results are reminiscent of the
(Smagorinsky, 1963) parameterization in which the eddy viscosity
dependent on the square of the typical length scale, often assumed
to be the grid-spacing. For numerical experiments, a least square fit
gives j ¼ �ðafitDxÞ2 with afit ¼ 0:45. Fig. 11(d) shows j diagnosed



Fig. 11. cPDFs for the eddy source term S� conditioned on r2 D�q
Dt for the upper layer, coarse-graining of 30 km from configurations with (a) strong wind forcing equal to

0:8 N=m2 and viscosity 100 m=s2, (b) viscosity parametrized as bottom-friction �r0r2w, (c) periodic-channel geometry forced with buoyancy, and (d) linear relationship
between the slope of the mean of the cPDFs j and the square of the coarse-grained resolution Dx2. The proportionality coefficient is around afit ¼ �ð0:45Þ2 (non-dimensional).
Each circle represents the value of j for at least 11 of the runs for each coarse-graining resolution Dx; note that many circles overlap.
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from all our sets of experiments vs. the respective resolutions
(squared) of the coarse-graining. The relationship
j ¼ �ðafitDxÞ2 � � Dx

2

� �2 holds for all model runs. Additional
coarse-graining studies, using for example, Gaussian weight func-
tions with different widths R, show that the coefficient

ffiffiffiffiffiffiffiffiffi
j j j

p
is

actually proportional to the width of the weight function used in
the coarse-graining procedure. This width sets the effective length
scale over which the fields are coarse-grained, so

ffiffiffiffiffiffiffiffiffi
j j j

p
reflects this

effective scale rather than the model-grid size Dx itself hence the
presence of afit.9

5.4. Standard deviation

The distributions’ mean alone cannot represent the variability
and extreme fluctuations of the eddy-eddy and eddy-mean flow
interactions. The standard deviation r of the cPDFs gives a measure
of the amplitude of the fluctuations of S� and therefore a first mea-
sure of the statistical/stochastic spread of the parameterization
and by extension the stochasticity of the eddy-eddy and eddy-
mean flow interactions.

Fig. 10(a) shows that the standard deviation r (in blue) starts
from an almost vanishing value corresponding to a Dirac-delta dis-
tribution before increasing as ðr2Dt�qÞ

n
with 1=2 < n K 1 and

asymptotically becoming almost constant. The initial increase is
a natural consequence of the increased turbulent fluctuations
owing to subgrid eddy activity accompanying the increase in the
magnitude of the conditional variable (reflecting the straining/
shearing of the flow). However, the asymptotic behavior for high
values of the eddy source term suggests that fluctuations saturate
9 Coarse-graining with a Gaussian weight function of standard deviation R is
equivalent to coarse-graining in spectral space with a Gaussian weight function of
standard deviation 1=R.
to some extent. The asymptotic saturated behavior is to be con-
trasted with the linear (or slightly quadratic) dependence of the
standard deviation on the mean, with no saturation, displayed in
Shutts and Palmer (2007) for the convective heating rate coarse-
grained in a numerical weather prediction model. The stochastic
fluctuations quantified by the standard deviation can be viewed
as multiplicative noise for small values of the conditional variable
but as additive noise as the magnitude of the eddy source and the
conditional variable increase.

An increase in wind forcing should lead to an increase in turbu-
lent activity and therefore in the magnitude of the eddy source
term and of its fluctuations. We therefore expect the (asymptotic)
standard deviation r, which is a measure of these fluctuations, to
be proportional to the external wind forcing or equivalently to
the fluctuations in potential vorticity. All runs with different values
of wind forcing show that the values of the eddy source term and
of the conditional variables increase as the wind forcing increases
and so does the variance (Figs. 10(a) and 11(a)). Therefore our con-
ditional variable is capable of capturing the increase of the eddy
source term and associated mean flow due to the increase of the
wind. It is likely that eddy saturation (Straub, 1993; Meredith
and Hogg, 2006; Munday et al., 2013) will be implicitly taken into
account by the conditional variable and would be revealed by the
distribution and variability of the conditional variable with respect
to wind forcing.

Since the fluctuations are a reflection of subgrid-scale variabil-
ity, they should be statistically damped as the number of fine-res-
olution grids corresponding to a coarse grid increases, so an inverse
proportionality with resolution is also expected. For example, Hu
and Pierrehumbert (2001) find an inverse proportionality to grid
spacing in the fluctuations of passive tracer distributions, so do
Shutts and Palmer (2007) for the PDFs of the convective heating
rate. Lastly, the eddy source term and its fluctuations are related



Fig. 12. (a) Linear relationship between the standard deviation r and wind forcing s0 divided by layer thickness H for different resolutions. The proportionality coefficients
are ð2:5;1:5;0:66Þ � 10�8m3=ðNs2Þ at resolutions ð30;60;120Þ km. (b) Inverse relationship between the standard deviation r rescaled by the corresponding wind forcing per
layer thickness s0=H, and the resolution Dx. The inverse proportionality coefficient, normalized by the density of water, is around 7:9� 10�4 (non-dimensional).

Fig. 13. (a) Linear relationship between the standard deviation r of the eddy source
term and the square of the standard deviation of the PV multiplied by layer
thickness H for different resolutions. The fluctuations of the eddy source term are
proportional to the fluctuations of PV, as expected, and also inversely proportional
to resolution.
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to barotropic and baroclinic instabilities therefore we expect the
shear, stratification and/or the Rossby radius of deformation to
play a role in determining r. In the present model, this information
is encapsulated in the stratification parameters, e.g., layer thick-
ness or density ratios between the layers.

We find indeed a simple relationship between the standard
deviation of the cPDFs r and the wind forcing s0, layer thickness
H, and horizontal resolution Dx such that r ¼ cfit

s0
DxHq0

where
cfit ¼ 7:9� 10�4 (non-dimensional) and q0 is the reference density.
Fig. 12(a) shows r as function of the ratio wind/thickness ðs0=HÞ for
our set of coarse-grained outputs. For each coarse-resolution Dx,
the value of r clearly tends to follow a linear trend, and the slope
for each coarse-grained output appears to decrease as the size of
the coarse-resolution grid-box increases. Fig. 12(b) shows that such
slopes have an inverse dependence on the resolution Dx. In Fig. 13,
the standard deviation of the eddy source also scales linearly with
the variance of the PV, still showing an inverse dependence on
the resolution. In this case, the scaling for the standard deviation
is given by r ¼ cfit;q

r2ðqÞH
Dx where cfit;q ¼ 1:7 such that cfit;q is order

one.10 For the cases of the periodic channel configuration and the sec-
ond-order viscosity parameterization, our scaling remains valid –
meaning that the standard deviation still increases with the forcing
and is inversely proportional to resolution. One main characteristic
found is that the standard deviation increases with the Reynolds
number and decreases with the coarse-graining size.

Note that the inverse proportionality of the standard deviation
to resolution found by Hu and Pierrehumbert (2001) scales as the
square root of the resolution length 1=

ffiffiffiffiffiffi
Dx
p� �

, whereas we find a
directly inverse dependence (1=Dx). Two factors could explain this
difference. First, the distributions studied by Hu and Pierrehumbert
(2001) are not conditional PDFs. Part of the inverse dependence on
resolution is expected to be found in the range of variability of the
conditional variable itself, leading to a square-root scaling for the
non-conditional PDF. Second, Hu and Pierrehumbert (2001) study
passive tracers, with particular dependencies on dissipation and
dispersion subsumed in the Ching and Kraichnan (1998) formula
used to derive their PDFs, and such dependencies are likely not
valid for our eddy source term S�. According to Duan and Nadiga
(2007), the inverse proportionality of standard deviation on the
resolution Dx implies that the flow of a coarse-resolution model
parametrized stochastically using S� should converge toward a
better approximation (in a specific L2-norm sense) of the high-
10 The standard deviation of enstrophy is also found to be a good predictor of the
standard deviation of the eddy source term.
resolution flow from which S� is derived as the coarse-resolution
size Dx tends to zero.

5.5. Skewness and kurtosis

Although the standard deviation provides a simple measure of
the statistical spread of the conditional dependence of S� on the
forcing, stratification and resolution, it does not provide any infor-
mation on the shape of this spread. The statistical deviations from
the mean of the cPDF are non-Gaussian, as evident from Fig. 10(b),
showing specific cPDFs chosen for different values of the condi-
tional variable Rð�qÞ ¼ r2 D�q

Dt in the upper layer. Besides fat tails
(indicative of non-zero kurtosis), we also notice a pronounced
asymmetry (non-zero skewness). Such non-Gaussianity in the
cPDFs is a general phenomenon often arising from non-linearities,
leading to correlations between fluctuations and their non-normal
superposition (e.g., Lorenz, 1995; Hu and Pierrehumbert, 2001;
Shutts and Palmer, 2007; Franzke et al., 2007). The fat tails can also
arise from intermittent transient instabilities (Majda and Kramer,
1999; Bourlioux and Majda, 2002; Majda and Gershgorin, 2013)
as the Reynolds (or Peclet) number increases and the flow can tran-
sition to turbulent and chaotic regimes with large fluctuations at
much greater frequencies than a Gaussian distribution would
allow. The skewness of the cPDFs reflects the fact that high fluctu-
ations can be more frequent toward one side than the other with
respect to the mean.
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Skewness and kurtosis are measured by the third and fourth
standardized (non-dimensional) moments l3 and l4, respectively
defined as
ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðS� � lÞni

rn

n

s
:

Both skewness and kurtosis remain remarkably constant with
respect to changes in the magnitude of the conditional variable
r2Dt�q (not shown). The constant skewness and kurtosis is mostly
due to the saturation of the standard deviation as the eddy forcing
and conditional variable increase in magnitude. Note that we are
always referring to the standardized moments, meaning skewness
and kurtosis are scaled by the standard deviation which itself does
depend on the wind, stratification, resolution and the value of the
conditional variable. Skewness l3 and kurtosis l4 for all model runs
and different coarse-graining size are shown in Fig. 14. Both stan-
dardized moments can be shown to be roughly constant and order
Oð1Þ independently of model parameters with least square fitting
procedure giving values of l3 � 0:61 and l4 � 1:4.

The third moment (skewness) shows some spread for a given
model resolution but it was not possible to attribute the spread
to the forcing, dissipation, stratification or any other coarse-resolu-
tion variables or forcing. In addition to the spread, a small depen-
dence of the skewness on the coarse-resolution grid size is found
such that the skewness decreases as the resolution increases. The
best fit could then be approximated as l3 � 4:5

Dx but the coefficient
would take the dimensions of meters. The linear fit being order
one captures most of the asymmetry with a fitting coefficient
which is dimensionless.

The fourth moment (kurtosis) is independent of any model
parameters and forcing. The best fit value of l4 � 1:4 remains
identical for all coarse-graining size values as well such that the
extreme events associated with the eddy-mean flow interaction
using this conditional variable are well captured by the mean
and the standard deviation of the cPDFs leading a constant stan-
dardized fourth moment.

The first four moments of PðS�jr2Dt�qÞ are determined by three
main coarse-resolution parameters: resolution Dx, wind strength
s0, layer thicknesses ðH1;H2;H3Þ, besides the conditional variable
itselfr2Dit�q. Using those parameters, we can therefore reconstruct
the four first moments of the cPDFs for any QG model under forc-
ing and dissipation without running a high-resolution model.
Fig. 14. Third and fourth standardized central moments l3;l4 plotted against
resolution Dx: they have almost constant values l3 � 0:61 and l4 � 1:4 with a
possible dependence of l3 on Dx.
5.6. Reconstruction of the conditional PDFs from the coarse-resolution
parameters and basis for a stochastic parametrization

We show that the knowledge of those four moments is enough
to reconstruct the shapes of the cPDFs with high accuracy so that
knowledge of higher order moments of the cPDFs is unnecessary.
The ill-posed inverse problem of reconstructing a probability
distribution from some of its moments can be done by several
techniques (from quadratures to fitting of pre-established
distributions).

In the present work, our goal is to reconstruct the conditional
PDFs in such a way as not to decrease the original statistical spread
of the distributions, crucial ingredient of a stochastic parametriza-
tion. We use the Shannon entropy HðpÞ ¼ �

P
ipi ln pi (Shannon,

1948; Kullback and Leibler, 1951; Bernardo, 1979) as a measure of
the spread of a discrete probability distribution p ¼ ðpiÞ and the
maximum-entropy method (Jaynes, 1982; Sivia, 1990) as our recon-
struction technique and described in Appendix D. Using Lagrange
multipliers, we estimate the discrete probability distribution func-
tions that satisfy the maximum entropy solution constrained by
the mean, standard deviation, skewness and kurtosis of the cPDFs.

The conditional PDFs reconstructed from the four moments via
the maximum-entropy method are shown in red in Fig. 15, com-
pared with the original cPDFs diagnosed from the high-resolution
model (in black) and with a Gaussian approximation constructed
using only mean and standard deviation (in grey). The reconstruc-
tion of the cPDFs, which relies simply on knowing the coarse-res-
olution grid size, forcing and stratification, appears to be an
excellent approximation to the originally diagnosed cPDFs and
captures more than 95% of the probability range. The Gaussian
approximation is visibly poor due to the importance of the skew-
ness and kurtosis of the original cPDFs.

The procedure to reconstruct the cPDFs PðS�jr2Dit�qÞ, which rep-
resents the subgrid-scale forcing, to be used as forcing/parameter-
ization in a coarse-resolution model can then be summarized as
follows:

1. choose the coarse-resolution model parameters: resolution Dx,
wind-forcing strength s0, and stratification Hi;

2. use Dx to calculate j, and use Dx, s0 and Hi to calculate the stan-
dard deviation r, and the standardized skewness l3 and kurto-
sis l4 with the scaling found in the previous section;

3. use the values of the moments in the entropy-maximization
procedure (see Appendix D) to find the discretized probabilities
pi ¼ PðS�i jr2Dit�qÞ.

The cPDFs PðS�jRð�qÞÞ could be used as a stochastic parameteriza-
tion in a coarse-resolution model as follows: (a) at a given time t
and grid point ð�x; �y; zÞ, we calculate the value of the conditional
variable Rð�qð�x; �y; z; tÞÞ; (b) using the PDF PðS�jRð�qð�x; �y; z; tÞÞÞ,
Fig. 15. Sample of diagnosed PDFs and their reconstruction using maximum-
entropy (red). A Gaussian approximation, using only the first two moments, is also
shown (grey). The dashed black lines show the 2.5% tails. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)



PierGianLuca Porta Mana, L. Zanna / Ocean Modelling 79 (2014) 1–20 15
conditional on the specific value Rð�qð�x; �y; z; tÞÞ, we randomly
choose a value S� of the eddy source term, according to the PDF;
(c) we then time-step the PV in Eq. (2) adding to the right-hand
side the stochastically chosen value S� of the source term, and so
find the value of PV at the next time step, �qð�x; �y; z; t þ DtÞ; (d) from
the updated value of PV, we also update any other diagnostic vari-
ables, such as the streamfunction �w, at time t þ Dt; (e) we set the
new time to t ¼ t þ Dt and go back to step (a). This procedure could
be implemented at each time step and each grid point of the
model, or only at particular times using finite decorrelation-time
to include information from the higher order moments. The
numerical results and stochastic parameterizations and its deter-
ministic counterpart (in which only the mean of the cPDFs j is cho-
sen to be constant) are left to a follow-up study.

The key points in this procedure are that (1) no run of a high-
resolution model is required to diagnose the eddy source term S�

or its distribution (at least in QG), (2) only very simple parameters
of the coarse-resolution model are required to construct the
cPDFs, which means that in principle no preliminary, exploratory
runs of the unparametrized coarse-resolution model are required
either.

6. Conclusions

In the panorama of stochastic parameterizations for sub-grid
scale processes we can broadly distinguish three approaches: (1)
through an explicit spatial and temporal dependence (Buizza
et al., 1999; Berloff, 2005b,a); (2) from subgrid activity partially
accounted for by an additional prognostic equation (Majdaa and
Gershgorin, 2010); (3) from information about the past and present
values of resolved variables or past values of the parametrization
itself (e.g., Frederiksen, 1999; Khouider et al., 2003; Shutts and
Palmer, 2007; Crommelin and Vanden-Eijnden, 2008).

In this study we have attempted to construct a stochastic
parameterization of ocean mesoscale eddies similar to the third
approach in order to account for the fluctuations in subgrid trans-
port, to represent upscale turbulent cascades, and to account for
model error associated with the uncertainty in the parameters
and the parametrization. We have coarse-grained the output and
equation of a high-resolution quasi-geostrophic (QG) model in a
double-gyre configuration, giving rise to an eddy source term S�

which represents the eddy-eddy and eddy-mean flow interactions
and the Reynolds stresses.

The complex spatial, temporal and statistical properties of the
eddy source term are analyzed as a function of the resolved scales
and external parameters. The functional form of the resolved scales,
based on a representation of turbulence as a Non-Newtonian visco-
elastic medium acting on a mean flow field, is used to describe the
eddy source term and its impact on the mean flow. The eddy source
term is described using an expression similar to the Rivlin–Ericksen
stress for fluids of second-grade (Rivlin and Ericksen, 1955; Holm
and Nadiga, 2003), given byr2Dt�q and is related to the rate of strain
and shear. The Rivlin–Ericksen stress, which is found to have a high
correlation with S� in most parts of the basin, captures the mean,
fluctuations and decorrelation timescale of the eddy source term.
We then further explored the impact of the Rivlin–Ericksen stress
as a deterministic and stochastic parameterization for transient
mesoscale eddies. The Rivlin–Ericksen representation of the eddy
source term is shown to introduce the forcing at small scales in
order to maintain the jet. The expression for the Rivlin–Ericksen
stress used in the present study is mostly understood as a shearing
and straining of the flow field but a theoretical derivation remains
to be done in order to explain why the functional r2Dt�q is such a
good predictor for the eddy source term S�.

We have used a probability distribution function (PDFs),
conditional on the functional Rð�qÞ of the resolved-scale prognostic
variable for the Rivlin-Ericksen stress. The conditional PDFs pres-
ent high kurtosis (fat tails) and skewness (asymmetry), meaning
that extreme fluctuations are not only more frequent than in a
Gaussian case but can be more frequent toward one sign than
another (with respect to the mean). Such behavior is common in
nonlinear turbulent flow (Majda and Kramer, 1999; Bourlioux
and Majda, 2002; Majda and Gershgorin, 2013). For this reason,
at least four moments of the cPDFs must be preserved. We found
that the coarse-grained resolution, wind strength, and stratifica-
tion are the only parameters necessary to determine the first four
moments: the mean l is proportional to r2Dt�q and to the square
of the resolution; the standard deviation r is proportional to the
wind strength, inversely proportional to resolution and layer
thickness, and asymptotically independent of the magnitude of
the functional r2Dt�q; the third and fourth standardized moments
are constants of order one. Using these four moments, the cPDFs
can be reconstructed with high accuracy via the maximum-
entropy method of information theory. Therefore the eddy source
term along with its spatial pattern and temporal fluctuations can
be reconstructed using the coarse-resolution grid size, the wind
forcing and the stratification. In light of these scalings, the imple-
mentation of a stochastic closure in a coarse resolution model
based on the conditional PDFs requires in principle very little tun-
ing and no preliminary high-resolution (QG) model runs to diag-
nose the subgrid forcing needed to force the coarse-resolution
model. It would be interesting to explore how the relationship
holds in primitive equation models and to use observations
(Holloway, 1986) to diagnose the eddy forcing as given by the
functional r2Dt�q.

The implementation of the deterministic and stochastic clo-
sures are currently being tested in a variety of numerical models.
The underlying functional r2Dt�q shares common features with
the deterministic parameterization of Nadiga and Margolin
(2001), Holm and Wingate, 2005, and Nadiga and Bouchet, 2011.
Therefore there is some confidence that the backscatter and jet rec-
tification can be reproduced with some success. Moreover similarly
to Berloff (2005b,a) the eddy source term temporal and spatial cor-
relations can be reproduced by using the cPDFs and their statistical
spread therefore taking into account the sub-grid scale fluctua-
tions. However the advantage over the other studies is that we
now have a scaling to predict the mean and fluctuations of the
eddy source and its dependence on the coarse-resolution model,
forcing and stratification, without the need of high-resolution runs
(at least in QG).

Yet, the implementation presents some intricacies owing to the
presence of the Lagrangian time derivative in the functionalr2Dt�q
and to a negative proportionality constant j. We are currently
investigating several approaches to evaluate r2Dt�q (e.g., from a
previous time step, using implicit method or by Helmholtz inver-
sion). In addition, the stability properties of the parameterization
are being investigated in relation to the sign of the j which repre-
sents the relationship between the mean of the cPDFs and the con-
ditional variable. All aspects of the numerical implementation will
be addressed in a follow-up paper.
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Appendix A. Description of the coarse graining methodology

The coarse-graining methodology used in this study is based on
the work by Murdoch and Bedeaux (1994). For an additive quantity
(such as mass, momentum or energy) w on a domain X, we define
its coarse-grained value w as the convolution given by

wðx; tÞ ¼
Z

X
Wðx� y; tÞwðy; tÞdy; ðA:1Þ

where W is a weight function such that
R

X Wðx; tÞdx ¼ 1, and the
total w is conserved such that

R
X wðx; tÞdx ¼

R
X wðy; tÞdy. If the

weight function W is positive-definite, Eq. (A.1) is equivalent to a
weighted space average of w. The weight is typically isotropic,
WðxÞ ¼Wðj x jÞ, and concentrated in a range Dx which defines the
coarse-graining scale. However if the convolution (A.1) corresponds
to a sharp truncation of w in wavenumber space then it would lead to
W being non-positive definite. When W is a Gaussian with standard
deviation R, Eq. (A.1) corresponds to a spatial average at a scale R but
also to a Fourier averaging to wavenumbers less than 1=R.

While it is easy to see that coarse-graining commutes with spa-
tial and temporal derivatives @tw ¼ @tw, rw ¼ rw, note that it is
not generally true that

w ¼ w exactly; ðA:2Þ

as often assumed in Reynolds averages. Yet, it often correct that
w � w, approximately (Murdoch and Bedeaux, 1994).

The discrete case is more complex. Suppose that our high-reso-
lution variable wI , where I denotes 2D indexes ðIx; IyÞ, is defined on
a 2D C-grid with cells of areas AI . The coarse-graining of wI onto a
variable wi on a low-resolution C-grid with indexes ðix; iyÞ and cells
of areas ai is given by

wi ¼
X

I

WiIwI ðA:3Þ

withX
i

WiIai ¼ AI;
X

I

WiI ¼ 1; ðA:4Þ

which ensures
P

IAIwI ¼
P

iaiwi (the time dependence was ignored
for simplicity). The indices i and I will have different summation
ranges. The discrete spatial-derivative operators do not commute
with the discrete coarse-graining such that

rw –rw; ðA:5Þ

where the finite-difference operators r and r operates on the
low-resolution and high-resolution grid, respectively.
Fig. A.16. One-dimensional weight functions for a coarse-graining from 7:5 km to 30 k
resolution grid nodes (blue dots) of the variable to be coarse-grained are summed with th
asterisks). The weights cannot be exactly constant owing to the constraints (A.4). The
meridional and zonal directions. (For interpretation of the references to color in this fig
In the present study we opt for a simple weight function W sat-
isfying (A.4), namely a constant one, having support on the mini-
mal length scale of the coarse-resolution model and isotropic in
the interior of the domain. In addition, energy, momentum and
vorticity are conserved. For coarse-graining from 7:5 km to 30 km
the resulting weight function is shown in Fig. A.16. We want to
coarse-grain the streamfunction w and PV q from a high-resolution
grid to obtain w, ~q onto a low-resolution grid. Eq. (A.3) cannot be
applied to both w and q simultaneously as it would lead to the fol-
lowing discrepancy:

�q ¼ r2wþ b�yþ @

@z
f 2
0

N2

@w
@z

� �
– ~q ¼ r2wþ b�yþ @

@z
f 2
0

N2

@w
@z

� �
;

ðA:6Þ

with a difference �q� ~q ¼ r2w�r2w stemming from the non-com-
mutativity (A.5).

We can choose to coarse-grain w and define the low-resolution
q in terms of the coarse-grained w however it would involve a com-
putationally costly Helmholtz inversion. We therefore opt to
coarse-grain q and define the low-resolution streamfunction in
terms of the coarse-grained ~q which is a relatively straightforward
operation. We define the low-resolution PV as

~q ¼ r2wþ b�yþ @

@z
f 2
0

N2

@w
@z

� �
ðA:7Þ

and the low-resolution velocity ~u ¼ ð�@yw; @xwÞ.
The coarse-graining of the prognostic model equation given in

Eq. (2) leads to

@�q
@t
þr � ðuqÞ ¼ mr4wþ F; ðA:8Þ

such that the coarse resolution PV ~q is given by the following
equation

@~q
@t
þr � ð~u~qÞ ¼ ~mr4wþ F þ S�; ðA:9Þ

where

S� ¼ r � ð~u~qÞ � r � ðuqÞ þ mr4w� ~mr4wþ @tðr2w

�r2wÞ: ðA:10Þ

This expression differs from that of Eq. (8) for the small non-com-

mutativity term @tðr2w�r2wÞ. In the main text we use �q; �u instead
of ~q; ~u for simplicity however, all calculations and figures take into
account the non-commutativity (A.5) for completeness.
m at: (a) a boundary node and (b) a generic interior node. The values at the high-
e weights shown (black circles) and assigned to the low-resolution grid node (black
2D weight function is the product of two 1D weight functions operating in the

ure legend, the reader is referred to the web version of this article.)
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Appendix B. Traditional closures: GM, PV mixing, shear

We examine the correlations of several conditional variables,
closely related to the traditional closures of the time-mean effects
of eddies onto the mean flow or related to the initiation of instabil-
ity associated with the eddies. Three main potential ‘‘parameter-
izations’’ of the eddy source term that could be used as
conditional variables are:

1. Gent and McWilliams (1990) mimicking time-mean baroclinic

instability, Rð�qÞ ¼ r � @
@z

f0
N2r�b
� �

;

2. PV homogenization such that the effect of the eddies is to mix
PV, Rð�qÞ ¼ r � r�q (Rhines and Young, 1982b);

3. a shear-based parameterization term, Rð�qÞ ¼ kr3 �uk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðr3 �uþr3 �uTÞ2�

q
, where Tr is the trace of the matrix and

the superscript T denotes the transpose. The term includes
barotropic and baroclinic shears.

Very poor correlations between GM or PV mixing, Rð�qÞ ¼ r2�q and
the eddy source terms are found. For example, Fig. B.17a shows the
correlation between the PV mixing and the eddy source term (the
correlation between the eddy source term and the GM-term is
almost identical to that Fig. B.17(a)). The complexity of the eddy
source term cannot be approximated by a simple down-gradient
closure as the sign of S� varies significantly along and across the
jet, unless a free parameter is allowed to vary with space and time.

Figs. B.17(b) and (c) show the cPDFs calculated for the
conditional variables Rð�qÞ defined as r2�q and kr3 �uk. No correla-
tions between these different conditional variables and the source
term are found. The mean of the PDFs is close to zero for most val-
ues of the conditional variables and the spread in the PDFs is rela-
tively large, spanning positive and negative values equally for any
given value of Rð�qÞ. Any spatial or temporal correlation would
have to be brought about by introducing spatially or temporally
varying tensorial coefficients using more complex conditional vari-
ables of the formr � jRYr�q with jRY ¼ jRYð�x; �y; z; tÞ. However, spa-
tially varying tensors would ultimately break the frame-invariance
of the parametrization. For the shear-based parametrization, the
spread in the PDFs increases for large values of the shear leading
to possibly extreme values of the eddy source term, in agreement
with the expectation that the eddies are derived from strong shears
but there is no clear correlation between the mean of the PDF and
the conditional variable, which makes the use of such relationship
Fig. B.17. (a) Correlations of the eddy source with PV homogeneization/diffusion r2�q. A

magnitude of the barotropic and baroclinic shear Rð�qÞ ¼ kr3 �uk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðr3 �uþr3 �uTÞ2�

q
. T

blue lines are the mean and standard deviation, respectively. (For interpretation of the ref
article.)
limited. While those parameterizations have been proven success-
ful when implemented in coarse-resolution models, their poor cor-
relation with the eddy source term and its fluctuations will
ultimately lead to errors in the representation of the transient
sub-grid scale processes and their impact on the mean flow.

Appendix C. Okubo–Weiss decomposition and LANS-a

While the conditional variable is related to the Rivlin–Ericksen
tensor it can also be described as a combination of the strain rate
and the Lagrangian rate of change of the potential vorticity gradi-
ent (Okubo, 1970; Weiss, 1991). Let us consider the potential vor-
ticity q equation given in Eq. (2), Dq

Dt ¼
@q
@t þ u � rq ¼ Dþ F. The

potential vorticity q is conserved along a Lagrangian trajectory
except for the sources and sinks due to dissipation and forcing.
Taking the gradient of Eq. (2) and using the relation
Dtrq ¼ rDtq� ðruÞTrq, the equation for the potential vorticity
gradient can be written as

Drq
Dt
¼ �ðruÞTrqþr F þDð Þ; ðC:1Þ

whereru is the velocity gradient tensor. The effect of dissipation is
to weaken the gradient of PV while the forcing can intensify and
rotate the PV gradient. The stress in our parameterization, rDtq,
can therefore be seen as an additional forcing acting on the local
rate of strain ðruÞTrq and the creation of sharper PV gradients in
addition on to the Lagrangian rate of change of PV gradient
(Dtrq) giving the orientation of the growth due to the evolution
of the water parcels. The Lagrangian rate of change appears to con-
tribute to the orientation of the eddy flow. Fig. C.18(a) shows the
mean PV contour lines superimposed on the angle formed by the
gradient of jr � Dr�q

Dt with the meridional axis. Positive values of
the angle translate into a counterclockwise rotation of r�q while
negative values into a clockwise rotation. The term related to the
Lagrangian rate of change thus acts to rotate the PV gradient.
Fig. C.18(b) shows the time mean PV contours in black superim-
posed on the averaged jr � ðr�uÞTr�q. The term related to the strain
rate is seen to coincide with strong PV gradients and therefore
believed to be responsible for the sharpening, rectification and
intensification of the jet. The PDFs of the eddy source term condi-
tional on r � Dr�q

Dt and on r � ½ðr�uÞTr�q� are shown in Figs. C.18(c)
and (d). While r � ½ðr�uÞTr�q� appears to enhance the PV gradient
and the strength of the jet, it does not produce as good a conditional
variable as rD�q

Dt or Dr�q
Dt , mostly due to the poor correlations in certain

parts of the basin (not shown).
lso shown are cPDFs for the eddy source term S� conditional on (b) r2�q and on (c)

he grey shading shows 5% quantiles increments of the conditional PDFs, the red and
erences to color in this figure legend, the reader is referred to the web version of this



Fig. C.18. Okubo–Weiss Decomposition of the conditional variable: effect of (a) jr � Dr�q
Dt and (b) jr � ½r�u�Trq on potential vorticity. Also shown are PDFs of the eddy source

term S� conditioned on (c) r � Dr�q
Dt and (d) r � ½r�u�Tr�q (30 km resolution).
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In addition to the similarities with the Okubo–Weiss straining-
shearing of the fluid see also for uniform strain (see also Waugh
et al., 2012 for PDF under uniform strain) the RE parameterization
shares many common properties with the Lagrange-averaged
Navier–Stokes-a (LANS-a) model (e.g., Chen et al., 1998; Nadiga
and Margolin, 2001; Holm and Wingate, 2005; Nadiga and
Bouchet, 2011) as discussed in Section 4.1. The model is presented
as a Lagrangian-averaged filter of the velocities. Nadiga and
Margolin (2001) and Holm and Nadiga (2003) derived several
baroclinic QG limits of the LANS-a model. One example of such
limit can be formulated as a parameterization taking the form:
SHN ¼ Dtr2�q�r2ðF þDÞ. The cPDFs of the eddy source term con-
ditioned on the Holm and Nadiga (2003) parameterization SHN (not
shown) exhibits a good correlation but not as tight as the one
formulated in Eq. (9). While both formulations share some com-
mon mathematical and physical motivation, the conditional vari-
able r2Dt�q has a simpler mathematical form which could
potentially lead to an easier numerical implementation of a sto-
chastic parameterization based on the cPDFs. Moreover, the oper-
ator defined in Eq. (11) acts upon the Eulerian tendency and the
advective term, which is not the case for the LANS-a model. Last,
but not least, the parameter j in our study is negative while the
a parameter is positive in the a model.

Appendix D. Reconstruction of the conditional PDFs using
Shannon entropy

To reconstruct the conditional PDFs in such a way as not to
decrease the original statistical spread of the distributions, con-
sider the Shannon entropy HðpÞ ¼ �

P
ipi ln pi (Shannon, 1948;

Bernardo, 1979; Kullback and Leibler, 1951) as a measure of the
spread of a discrete probability distribution p ¼ ðpiÞ. Therefore
we can choose the maximum-entropy method (Jaynes, 1982;
Sivia, 1990) as our reconstruction technique. The maximum-
entropy method chooses, among all distributions that satisfy a
set of linear constraints (the four moments in our case), the one
which has maximum Shannon entropy. This procedure outlined
in Mead and Papanicolaou (1984) proves to be computationally
efficient given our set of constraints. For the discrete case, pi are
the probability for the value S�i of eddy the source term and the
constraints are the values of the four raw moments lk (which
can easily be found from the standardized moments) such thatP

ipiS
�k
i ¼ lk with k ¼ 1; . . . c;4. The variational optimization prob-

lem is therefore given by
d HðpÞ �
X

k

kk

X
i

piS
�k
i

 !
¼ 0; ðD:1Þ
where kk are Lagrange multipliers, and leads to the probabilities
pi ¼ exp �
X

k

kkS�ki

 !,
Z; ðD:2Þ

with ZðkkÞ ¼
P

i expð�
P

kkkS�ki Þ. Performing a Legendre transforma-
tion of expression (D.1) and substituting (D.2), the sought kk are
those for which convex function
d ln ZðkkÞ þ
X

k

kklk

 !
¼ 0 ðD:3Þ
and all other quantities, lk and S�i , are known. The optimization
problem is computationally fast and cheap. Once the four Lagrange
multipliers kk are found, they can be replaced in the expressions for
the probabilities (D.2), so that the discrete conditional PDFs
pi ¼ piðS

�
i ;lkÞ are entirely reconstructed.
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