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Introdution

The ontext

It is no easy task to unravel the rather interwoven ontext wherein the

present work �nds its plae into a sequential thread; and, just as a one-to-one

mapping from the plane onto the line neessarily breaks the original topology,

so a sequential exposition an but show onepts that are near as they were

far apart. Nevertheless we shall try to desribe this ontext and give a frame

to the motivations, the goals, the results of this work. The Grand Uni�ation

of the fundamental fores of nature, String Theory, The Holographi Prini-

ple, and General Relativity are the four pillars whereupon this ontext rests

(q.v. Polhinski [38℄).

The Grand Uni�ation and String Theory

The quest for a unitary desription of nature

1

by means of one fundamental

theory has marked theoretial physis in this entury, and very likely will mark

it in the oming entury as well.

Two main questions | still unanswered | in this quest are the onsistent

quantization of the gravitational �eld and the uni�ation of the four fundamental

interations at high energies. String Theory appears to be the most promising

theory to solve these questions today.

The key idea in String Theory is that partiles, i.e. the �elds' quanta, should

be unidimensional, rather than point-like, objets; though their unidimension-

ality should manifest itself at a very mirosopial length sale | Plank's

sale, L

P

� 10

�33

m | and so at very high energies, � 10

16

GeV. This simple

idea leads to the solution of the `ultraviolet plague' and to the uni�ation of the

four fundamental fores; but String Theory has other good features as well: at

low energies it yields General Relativity as an e�etive theory; it inorporates

most fashionable useful physial-mathematial onepts suh as supersimmetry

and symmetry breaking; its mathematial form is suh that many important

parameters (e.g. spaetime dimensionality) are uniquely determined just by re-

quiring mathematial onsisteny.

1

In fat, a number of evidenes seems to show that suh a desription ould be non-unitary

instead (in the quantum-mehanial sense).
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Yet String Theory is very omplex mathematially | just beause it re-

plaes point-like with unidimensional objets |, and this has been the main

obstale against its full aeptane so far; indeed, one annot make many uni-

voal preditions at the energy sales whih one an probe by today's partile

aelerators.

However, reent studies emphasize the importane of the theory's non-

perturbative struture, where one �nds solutions like D-branes and blak

holes, and a reent priniple is proving to be very useful in this respet: the

Holographi Priniple, whih seems to be apable of yielding new results from

the theory in regimes that annot be perturbatively analysed.

The Holographi Priniple

The adjetive `holographi' refers to the oding of a system's whole informa-

tion onto a part of the system itself, e.g. its surfae, in analogy with holography,

where three-dimensional optial information is oded on a (bidimensional) sur-

fae.

The Holographi Priniple was formulated for the �rst time by 't Hooft [46℄,

who showed how di�erent kinds of string theories orrespond, or are dual, to

di�erent kinds of gauge theories in the limit-ase where these have an in�nite

number of olour harges. This fat is the soure of many important onse-

quenes. First, the duality is, in ertain ases, between di�erent energeti and

oupling regimes, so that non-perturbative results for a string theory may or-

respond to perturbative ones for the dual gauge theory, and vie-versa. Then,

sine at low energies a string theory redues to a gravity theory (possibly with

additional �elds, like e.g. the dilaton �eld), one an �nd remnants of the duality

at an e�etive-theory level.

A more reent and stronger formulation of the Holographi Priniple is due to

Susskind [43℄, who states that a gravity theory on (four-dimensional) spaetime

is equivalent to a non-gravitational theory on a (two-dimensional) surfae, with

an upper bound for the information(the Holographi Bound) of 1 bit per Plank

area (L

P

2

); this bound omes from the fat that infrared e�ets in the bulk

theory orrespond to ultraviolet e�ets in the surfae theory (q.v. Susskind and

Witten [44℄).

When the oupling onstant of the dual gauge theory does not depend on

the energy sale, then the dual gauge theory is onformally invariant. Sine the

onformal group in D dimensions is isomorphi to SO(D; 2)

2

, the dual string

theory must ontain this symmetry group; this in turn implies that the manifold

whereupon the string theory lives must be AdS

D+1

� S

D+1

, where AdS

n

is n-

dimensional anti-de Sitter spae. Following the priniple further, a great number

of olour harges orresponds to low energy regimes of the string theory, whih

thus redues to a gravity theory on (D+1)-dimensional anti-de Sitter spae. So,

in this ase, the Holographi Priniple appears as a duality priniple between

D-dimensional onformal �eld theory and gravity theory on (D+1)-dimensional

2

Exept for D = 1 and D = 2, where it is in�nite-dimensional.
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anti-de Sitter spae, as stated by Maldaena [35℄, and many interesting results

and interesting interpretations of known results emerge from this duality. As

an example, for D = 4 the priniple puts into orrespondene non-perturbative

Yang-Mills theory with low-energy gravity theory, so that by studying the latter

one obtains results onerning the former. For D � 2 the opposite situation

happens: onformal symmetry beomes in�nite-dimensional and one an study

the onformal �eld theory in order to solve problems of the gravity theory;

indeed one has a glimpse of a possible statistial interpretation for the entropy

of a three-dimensional blak hole.

Gravity theory on (D+1)-dimensional anti-de Sitter spae has got one

more dimension than the onformal dual theory, whih lives on D-dimensional

Minkowski spae (short of topologial identi�ations). Sine the boundary of

anti-de Sitter spae is onformal to Minkowski spae, one �nds it natural to

suppose that the dual theory should be some way related to this boundary.

An exat orrespondene between the two theories is not at hand yet, but re-

markable improvements have been made thanks to the identi�ation of the two

theories' symmetries: sine the dual onformal theory is related to the bound-

ary of anti-de Sitter spae at in�nity, its symmetries are identi�ed with the

asymptoti symmetries of anti-de Sitter spae.

Asymptoti symmetries are the symmetries that a gravity theory possesses

at in�nity. They are studied by speifying suitable asymptoti onditions for

the �elds of the theory. Charges are assoiated to the asymptoti symmetries:

usual harges like mass or angular momentum, but also other harges whih

make the algebra of the symmetry generators highly untrivial. The most famous

ase is three-dimensional anti-de Sitter spae, and was studied by Brown and

Henneaux [14℄ at the end of the eighties; in this ase the asymptoti symmetries

onstitute an in�nite-dimensional group whose generators forms two opies of

a Virasoro algebra with a de�nite entral harge: this group is atually the

group of onformal transformations in two dimensions. Having a orrespondene

between the symmetry groups of the two theories, one an go on to suppose a

orrespondene between states, and an ount the mirostates in the onformal

theory orresponding to a given marostate whih is represented by a blak

hole in the gravity theory. Thus one an alulate, by statistial means, blak-

hole entropy | a quantity whih had always been omputable by semilassial

thermodynami means only.

The Holographi Priniple ould be also a way to work out the so-alled

information paradox, onsisting in the fat that a blak hole, eventually, evapo-

rates ompletely, aording to semilassial preditions, and thus all information

that has been trapped inside its surfae during its formation proess gets lost.

The paradox might be solved, for the information would not really be trapped

inside the event horizon, but rather would be found oded on the boundary.

Thus one an see how the Holographi Priniple should some way manifest

itself even at a semilassial or lassial level, within General Relativity.

3



General Relativity

It is a general harateristi of gravity theories the possibility of oding all

the system physial information, or part thereof, on a surfae; this possibility is

mathematially shown by the fat that the system's harges appear as surfae

integrals. This is due to the di�eomorphism-invariane of the theory: a kind of

invariane whih introdues many unphysial, gauge degrees of freedom. The

idea here is that all e�etive, physial degrees of freedom an be found on the

system boundary.

The development of a Hamiltonian formalism for gravity theory has helped

to shed light on this point. In the Hamiltonian formalism, indeed, it is of

great importane the distintion between the system's phase-spae oordinates

on the one hand, and the time oordinate, whih marks the system's evolution

and dynamis, on the other hand; or, in short, the distintion between spae

and time. As soon as a gravity theory is formulated in a Hamiltonian form, a

profound di�erene is set up between spatial oordinates and the temporal one:

di�eomorphism-invariane almost disappears, but at the same time almost all

unphysial degrees of freedom disappear as well.

An interesting feature of the gravitational Hamiltonian, as opposed to the

Hamiltonians of other theories, is that it needs a boundary integral to be well-

de�ned, as was learly shown by Regge and Teitelboim [39℄. More reently,

York [47℄ demonstrated that the gravitational Lagrangian needs additive bound-

ary terms as well, in order to yield a better de�ned variational priniple. So

a new interest has ourished, in these years, just in those surfae terms that

university students learn to disard after applying Stokes' Theorem in the vari-

ational alulation. The Hamiltonian boundary terms yield the system's (on-

served) harges, and, following Brown and York's quasiloal formalism [17℄, the

Lagrangian boundary terms lead to (onserved) quantities as well.

The exat form of the boundary integral is still an objet of researh and

disussion in the literature, though; speial problems remain in �nding a general

expression for that part of the integral, the so-alled `ounterterm', whih allows

one to obtain renormalised results when the system's boundary is pushed to

in�nity. A way for its onstrution has long been adopted, that refers to a

bakground spaetime or `ground state'; more reently another, `intrinsi' way,

whih refers to the boundary geometrial objets, has been proposed [5℄. Both

these methods rest on reasonable theoretial grounds, but some ambiguities

make them unsteady; anyway, it is lear that they are more similar to eah

other than it may seem, and that they are asymptotially equivalent [33℄.

The way toward a general exat expression for the boundary terms lies upon

a deeper understanding of the relationship between the ground state and the

exited states (say, blak-hole states) of the theory. From the point of view of

the Holographi Priniple, �nding a general orret expression is important for

orretly obtaining the harges assoiated to the asymptoti symmetries and,

hene, to the dual theory.
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The present work

In the previously outlined ontext, the present work moves along the three

diretions that follow.

The suitable asymptoti onditions for a three-dimensional dilatoni theory

(of the Jakiw-Teitelboim kind) on anti-de Sitter spae will be studied; thene

the asymptoti symmetries and the harges will be obtained. A omparison

with the orresponding three-dimensional non-dilatoni theory will be made,

examining how the dilaton's presene breaks the symmetries: we shall �nd

that the symmetries form a �nite-dimensional group (the ground-state isometry

group), unlike the non-dilatoni ase where the group has in�nite dimensions;

but the presene of the dilaton leads to diverging harges, foring the group to

be even smaller in order to avoid them.

A disussion will be made about the way Brown and York's formalism an be

applied to the study of asymptoti symmetries and the alulation of their asso-

iated harges; some expliit alulations in anti-de Sitter spae (for the three-

and two-dimensional dilatoni ases, and the three-dimensional non-dilatoni

ase) will be given as examples, and a omparison with the already known re-

sults found through the Hamiltonian method will be made. We shall see how

Brown and York's formalism is not ompletely �t for studying the asymptoti

symmetries, neither are some Hamiltonian boundary terms reently proposed

in the literature.

Moreover, in the alulations for the two-dimensional ase, we shall use both

the bakground referene ounterterm and the intrinsi ounterterm, omparing

them, and pointing out the ambiguities whih a�et the latter in the presene

of a dilatoni �eld.

Struture of the disussion

The present work is strutured into four hapters.

In the �rst hapter, the main onepts and objets whih will serve for the

subsequent alulations are de�ned: the manifold whih hosts the metri and

dilaton �elds, its boundary, the Lagrangian and Hamiltonian formulations of

gravity theory, anti-de Sitter spae and blak-hole solutions.

The onepts of asymptoti ondition, asymptoti symmetry, and assoiated

harge are de�ned in the seond hapter, and the Hamiltonian and Brown and

York's methods for omputing the harges are outlined; a disussion about the

generalisation of the latter method to a dilatoni theory is made. Some of the

boundary terms proposed so far in the literature are examined and ompared.

In the third hapter expliit alulations of the asymptoti onditions and

symmetries and harges for gravity on two- and three-dimensional anti-de Sitter

spae, with and without dilaton �eld, are made; �rst through Hamiltonian for-

malism and then through Brown and York's formalism; both bakground and

intrinsi ounterterms are used. The statistial method for entropy alulation

through the onformal dual theory is skethed.

Finally, �nal remarks and onlusions are left to the fourth hapter.
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Chapter 1

Generalia

1.1 De�nitions

1.1.1 Notation

The following typographial onventions will be used to distinguish among

di�erent geometrial objets: salars and tensors will be in itali (e.g. �, T

��

),

salar and tensor densities in boldfae itali (e.g. P

ab

, �

�

,

p

�g ,

p

h ),

operators in boldfae Roman (e.g. r, D, L), manifolds in alligraphi style

(e.g. M, B), integrals in Fraktur (e.g. L, J); D-dimensional Minkowski spae

is M

D

, and �nally see next setion for onvention on tensor indies.

Integrals will not show oordinates (d

D

x, et.) | easily inferable from the

integration manifold, whih will always be indiated |, exept in ases of non-

generi dimensionality.

The natural system of units ( = G = } = 1) will be used throughout.

1.1.2 Main geometrial objets

We shall work on a (D+1)-dimensional di�erentiable manifold M, whose

boundary �M is given by the union of the D-dimensional hypersurfaes S

0

, S

00

,

and B; the �rst and the seond are homeomorphi to the interior of S

D

and the

third to S

D�1

� I , where I is a real interval. The intersetion between S

0

and B

is the (D�1)-dimensional surfae P

0

, whih is the boundary of S

0

; an analogous

de�nition holds for P

00

; P

0

and P

00

onstitute the (disonneted) boundary of B.

The surfaes S

0

and S

00

an be thought of as the initial and �nal surfaes of

a foliation ofM into hypersurfaes S

t

(or S for short). This foliation indues a

foliation on B into surfaes P

t

(or P for short), P

t

� B\S

t

, with P

0

and P

00

as

extrema.

One an hoose an adapted oordinate system on M,

fx

�

g � fx

0

; x

i

g � fx

a

; x

D

g � fx

0

; x

A

; x

D

g � ft; x

A

; rg; (1.1)

7



with the following onventions for indies:

�; �; et. 2 f0; : : : ; Dg; (1.2a)

i; j; et. 2 f1; : : : ; Dg; (1.2b)

a; b; et. 2 f0; : : : ; D � 1g; (1.2)

A;B; et. 2 f1; : : : ; D � 1g; (1.2d)

this oordinate system is adapted to the foliation so that the S hypersurfaes

are given by t = onst., the boundary B by r = onst., and the P surfaes

by t; r = onst. It is always possible to hoose suh a oordinate system loally.

The manifold M is given a pseudo-Riemannian metri g

��

(signa-

ture (�;+; : : : ;+)), with onnexion r and salar urvature R

M

. This metri

struture indues other metri strutures on the various surfaes (Fig. 1.1):

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

p

p

6 6

-�

�

��

H

H

Hj

S

0

S

S

00

P

0

P

P

00

B

u

�

u

�

~u

�

~n

�

n

�

M

Figure 1.1: Example of a foliation for D = 1 (in this ase the P surfaes degenerate

into pair of points); the di�erent normal vetors are shown.

� the S surfaes are spaelike with future-oriented, timelike unit normal ve-

tor �eld u

�

; they have indued metri h

��

� g

��

+ u

�

u

�

, linear onnex-

ion D, intrinsi urvature R

S

, and extrinsi urvature K

��

� �

1

2

L

u

h

��

�

�h

�

�

h

��

r

�

u

�

; two projetion operators are given: h

�

�

projets a tensor

index onto S, while �u

�

u

�

projets onto the normal;

� the hypersurfae B is timelike with outward-pointing, spaelike unit nor-

mal vetor �eld n

�

; the indued metri is 

��

� g

��

�n

�

n

�

, with onnex-

ion � and extrinsi urvature �

��

� �

�

�



��

�

�

n

�

; 

�

�

projets a ten-

sor index onto B, while normal projetion is done by n

�

n

�

; the hyperboli

angle between the normal vetor �elds u

�

and n

�

is �

def

= � arsinhu

�

n

�

;

� every surfae P is spaelike with indued metri �

��

(�

�

�

operates tan-

gential projetion), and has four unit normal vetor �elds:

8



1. u

�

, as it is a submanifold of S;

2. n

�

, as it is a submanifold of B;

3. ~n

�

, an outward-pointing, spaelike unit vetor �eld whih is normal

to P with respet to its embedding in S;

4. ~u

�

, a future-pointing, timelike unit vetor �eld whih is normal to P

with respet to its embedding in B.

The omponents of the metri objets above have simple expressions in the

adapted oordinate system (the usual Arnowitt-Deser-Misner [3℄ deomposi-

tion):

(g

��

) �

�

�N

2

+N

k

N

k

N

j

N

i

h

ij

�

(1.3a)

�

�



ab

V

b

V

a

V

2

+ V



V



�

; (1.3b)

(g

��

) �

0

B

B

�

�

1

N

2

N

j

N

2

N

i

N

2

h

ij

�

N

i

N

j

N

2

1

C

C

A

(1.3)

�

0

B

B

�



ab

+

V

a

V

b

V

2

�

V

b

V

2

�

V

a

V

2

1

V

2

1

C

C

A

; (1.3d)

where

h

ik

h

kj

� Æ

i

j

; (1.4a)



a



b

� Æ

a

b

; (1.4b)

N

i

def

= N

k

h

ki

; (1.4)

V

a

def

= V





a

; (1.4d)

(so that h

ij

and 

ab

are the inverse metris in S and B respetively). N and

N

i

are the lapse and shift (with N

0

� N

t

= 0 and V

D

� V

r

= 0 by de�nition).

Moreover one has:

(u

�

) �

�

1

N

;�

N

i

N

�

; (1.5a)

(n

�

) �

�

�

V

a

V

;

1

V

�

; (1.5b)

(u

�

) � (�N;

~

0); (1.5)

(n

�

) � (

~

0; V ): (1.5d)
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Sine the boundary B is foliated as well, its metri an be deomposed as

(

ab

) �

�

�

~

N

2

+

~

N

C

~

N

C

~

N

B

~

N

A

�

AB

�

; (1.6)

where

~

N and

~

N

A

are the boundary lapse and shift, with

~

N

0

�

~

N

t

=

~

N

D

�

~

N

r

def

= 0.

When the S hypersurfaes are orthogonal to B (i.e. when � = 0), one has:

~u

�

= u

�

; (1.7a)

~n

�

= n

�

; (1.7b)

N =

~

N; (1.7)

N

A

j

P

=

~

N

A

; (1.7d)

N

r

j

P

= 0: (1.7e)

Finally, one an onsider the asymptoti limit r ! 1 where the S hyper-

surfaes assume a spatially in�nite extension, B and P being pushed to in�nity.

1.2 Lagrangian and Hamiltonian formulations

of gravity theory

1.2.1 Gravitational Lagrangian

Hilbert was the �rst to write down a Lagrangian for Einstein's General The-

ory of Relativity:

L

HE

def

=

Z

M

p

�gR

M

; (1.8)

thereby deduing the equations of motion for the gravitational �eld just before

Einstein himself.

Sine then, Einstein's theory has beome like the trunk of a tree whene

numerous theories branh o� | some thiker, some thinner |, whih in turn

have other branhes, and owers sometimes. This manifold development of

General Relativity is reeted in the many ations/Lagrangians of the branh

theories, whih may even be very di�erent from one another, yet eah always

ontains (1.8) as a partiular ase.

Among them, there are theories where the gravitational �eld is oupled to a

salar �eld, the dilaton, in a non-minimal way (the dilaton is multiplied by the

urvature); suh theories an often be, or atually are, derived from e�etive

string theories, and represent their ation at low energies.
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In the present work, a Lagrangian of the latter kind will be onsidered:

L

def

= �

Z

M

p

�g �(R

M

+�) + 2�

Z

S

00

S

0

p

h �K

� 2�

Z

B

p

� ��+ 2�

Z

P

00

P

0

p

� �� + L

�

+ L

mat

;

(1.9)

where � is the dilaton �eld, � is a model- and dimension-dependent onstant,

� is twie the osmologial onstant, L

�

def

=

R

B

p

�gL

�

[

ab

; �℄ is a boundary term

whih is a funtional of the B-indued metri (more preisely: geometry) and

dilaton �elds (so that it does not ontribute to the equations of motion, but does

ontribute to the harges de�nition), L

mat

is the matter Lagrangian (minimally

oupled to the gravitational �eld), and the other symbols have already been

introdued. This Lagrangian is a partiular ase of the Brans-Dike Lagrangian,

L

BD

def

= �

Z

M

p

�g �

�

R

M

+

!

�

2

(r�)

2

+�

�

+ 2�

Z

S

00

S

0

p

h �K

� 2�

Z

B

p

� ��+ 2�

Z

P

00

P

0

p

� ��+ L

�

+ L

mat

;

(1.10)

and ontains Hilbert-Einstein Lagrangian in turn. In what follows, we shall

seldom be onerned with the matter term, but this will have no onsequenes

upon the validity of the main reasoning lines and of �nal results.

The boundary terms make the Lagrangian (1.9) suited for a variational prin-

iple with �xation of the �elds on the boundary; indeed the variation is:

ÆL =

Z

M

(�

��

Æg

��

+�

�

Æ�) +

Z

S

00

S

0

(P

��

Æh

��

+ P

�

Æ�)

+

Z

B

(�

��

Æ

��

+�

�

Æ�) +

Z

P

00

P

0

(�

��

Æ�

��

+ �

�

Æ�)

+

Z

B

(�

�

ab

Æ

ab

+�

�

�

Æ�) +

Z

M

1

2

p

�g T

��

Æg

ab

+ [terms oming from the variation of the matter �elds℄;

(1.11)

where the symbols have the following de�nitions:

�

��

def

= ��

p

�g [�G

��

�

1

2

��g

��

+ g

��

(r�)

2

�r

�

r

�

�℄

=

p

�g �

��

;

(1.12a)

�

�

def

= ��

p

�g (R

M

+�) =

p

�g �

�

; (1.12b)

P

��

def

= ��

p

h [�(K

��

�Kh

��

) + h

��

u

�

�

�

�℄ =

p

hP

��

; (1.12)

P

�

def

= 2�

p

hK =

p

hP

�

; (1.12d)

�

��

def

= ��

p

� [�(�

��

��

��

) + 

��

n

�

�

�

�℄ =

p

� �

��

; (1.12e)
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�

�

def

= �2�

p

�� =

p

� �

�

; (1.12f)

�

��

def

= �

p

� ���

��

=

p

� �

��

; (1.12g)

�

�

def

= 2�

p

� � =

p

� �

�

; (1.12h)

�

�

ab

def

=

ÆL

�

Æ

ab

=

p

� �

�

��

; (1.12i)

�

�

�

def

=

ÆL

�

Æ�

=

p

� �

�

�

; (1.12j)

T

��

def

=

2

p

�g

ÆL

mat

Æg

��

: (1.12k)

Sine we assumed that the metri and dilaton indued on the boundary were

�xed, their variations on the boundary vanish and so do all terms but the �rst

and the last in (1.11); in order for the �rst and last terms to vanish as well, we

must set to zero the oeÆients of Æg

��

and Æ�; thus we have the equations of

motion:

�

��

= �

1

2

T

��

; (1.13a)

�

�

= 0: (1.13b)

1.2.2 Gravitational Hamiltonian

A Hamiltonian formulation of gravity theory is appealing in view of its sub-

sequent possible quantization, | and so in view of a quantum theory of gravity.

Suh a formulation is more or less well established today, and represents a way to

a better understanding of gravity theory's priniples; a onsistent (divergene-

less) quantization is not at hand yet, though.

The most important steps toward the onstrution of the gravitational

Hamiltonian have been taken by Dira [27℄, Arnowitt, Deser, Misner [3℄,

DeWitt [26℄, and Teitelboim [39, 45℄, to say nothing of many others.

In the Hamiltonian formalism, the distintion is ruial between the oor-

dinates that desribe the system in phase spae, and the time oordinate that

traes the system evolution; the distintion between spae and time for short.

In the lassial formulation of gravity theory, this distintion is almost om-

pletely suppressed instead | of ourse, sine this is one of the theory's prin-

iples. Hene, in onstruting a gravitational Hamiltonian, one must `retrae

one's steps' with respet to this priniple, and restore the distintion between

time and spae.

The distintion is aomplished by foliating the spaetime manifold M,

where the metri �eld g

��

lives, into spaelike hypersurfaes S (q.v. Se. 1.1);

this way the system's phase spae is spanned by the spaelike metri ompo-

nents h

ij

and the dilaton � whih live on the leaves, and by their onjugate

momenta P

ij

and P

�

: these are the new dynamial variables. Thus the num-

ber of degrees of freedom dereases from

1

2

(D

2

+3D+4) to

1

2

(D

2

+D+2).
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The system trajetory may be visualized as an evolution of the hypersurfaes

| whih arry the metri and dilaton �elds | in a temporal diretion, and

the evolution take plae between two �xed hypersurfaes (S

t

0

; h

0

ij

; �

0

;P

ij

0

;P

�

0

)

and (S

t

00

; h

00

ij

; �

00

;P

ij

00

;P

�

00

), in analogy with a lassial system's path between

two �xed points. The (lassial) trajetory of the gravitational system must

extremise the ation, and this leads to the Hamiltonian equations of motion for

the metri omponents, the dilaton and their momenta.

Mathematially, all this orresponds to a division of Einstein's equations

into two groups: D+1 equations impose ompatibility onstraints on the initial

data (h

0

ij

; �

0

;P

ij

0

;P

�

0

), while the remaining D

2

equations yield the e�etive

dynamial evolution.

The Lagrangian L, whih has a ovariant, oordinate-independent form, an

be re-expressed in a anonial form, in terms of the objets whih emerge from

the spaetime foliation (q.v. e.g. Kijowski [31℄), by means of the Gauss-Codazzi

relation

R

M

= R

S

�K

2

+K

ij

K

ij

� 2r

�

(u

�

K + u

�

r

�

u

�

); (1.14)

and it beomes

L = S

def

=

Z

t

00

t

0

�

Z

S

(P

��

_

h

��

+ P

�

_� �NH �N

i

H

i

)

�

Z

P

(

~

NE �

~

N

A

J

A

)

�

;

(1.15)

where

H

def

= 2

p

h u

�

u

�

�

��

= �2P

ij

K

ij

+ P

�

u

�

�

�

� �

p

h [�(R

S

+K

ij

K

ij

�K

2

)

+ 2Ku

�

�

�

� � �(u

�

�

�

�)

2

+ �(D�)

2

� 2D

2

� + ��℄

(1.16a)

is the Hamiltonian energy onstraint, while

H

i

def

= �2

p

hh

i�

u

�

�

��

= �2D

k

P

k

i

+ P

�

D

i

� (1.16b)

is the Hamiltonian momentum onstraint; and

E = 2

p

� ~u

a

~u

b

�

ab

= 2

p

� (�n

�

r

�

� + �k)�E

�

; (1.17a)

J

A

= 2

p

� �

Aa

~u

b

�

ab

= 2

p

� �

Ai

n

j

P

ij

� J

�

A

; (1.17b)

with

E

�

= 2

p

� ~u

a

~u

b

�

�

ab

; (1.17)

J

�

A

= 2

p

� �

Aa

~u

b

�

�

ab

; (1.17d)
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are the energy and momentum boundary terms.

We shall some important remarks upon the boundary integral in Eq. (1.15)

later; now we just want to note that the Hamiltonian energy and momentum

onstraints H and H

i

depend upon the phase-spae variables (h

ij

; �;P

ij

;P

�

)

and the lapse and shift; the quantities E and J

i

, instead, do depend solely

upon the anonial variables only if E

�

and J

�

i

do (we shall see later that these

quantities are the system energy and momentum).

By means of a Legendre transformation

Z

t

00

t

0

H =

Z

t

00

t

0

Z

S

(P

��

_

h

��

+ P

�

_�)� L (1.18)

one �nally obtains the gravitational Hamiltonian

H

def

=

Z

S

(NH +N

i

H

i

) +

Z

P

(

~

NE �

~

N

A

J

A

); (1.19)

and the anonial equations of motion are

_

h

ij

=

ÆH

ÆP

ij

; (1.20a)

_� =

ÆH

ÆP

�

; (1.20b)

_

P

ij

= �

ÆH

Æh

ij

; (1.20)

_

P

�

= �

ÆH

Æ�

: (1.20d)

This kind of Hamiltonian approah, whih adopts fh

ij

; �;P

ij

;P

�

; N;N

i

g as

anonial variables, is mainly due to Arnowitt, Deser and Misner [3℄. There are

also other approahes, whih use a di�erent set of variables and present other

advantages, like e.g. Ashtekar's approah [4℄ that uses a spinor struture on the

spaelike leaves. In the present work only Arnowitt, Deser and Misner's method

will be onsidered.

1.2.3 The lapse and shift

The so alled `lapse' N and `shift' N

i

in Eqs. (1.15) and (1.19) play the role

of Lagrange multipliers; indeed, the vanishing of the oeÆients of their varia-

tions leads to the equations H = 0 and H

i

= 0, whih are just the onstraint

equations for the initial data. A very important feature of the gravitational

Hamiltonian is that the lapse and shift are not determined by the equations of

motion, but rather they are to be spei�ed ab initio in order to integrate the

equations (a similar situation arises, with the salar potential, in the Hamilto-

nian for the eletromagneti �eld; q.v. Misner, Thorne e Wheeler [37, x21.8℄).

This harateristi appears as a residual of the Lagrangian full gauge symmetry,

and is related to the fat that there is not only one possible foliation of (M; g

��

)
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between the hypersurfaes (S

t

0

; h

0

ij

) and (S

t

00

; h

00

ij

), but rather an in�nite family

of foliations; only after one of them is given, an the anonial variables' evolu-

tion be studied. When one spei�es the lapse and shift, one is in fat speifying

a foliation; more preisely, one is speifying the unique future-pointing, timelike

unit vetor �eld u

�

whih is normal to every leaf of that foliation. The vetor

omponents are given by:

u

0

=

1

N

; (1.21a)

u

i

= �

N

i

N

: (1.21b)

The lapse N(t; x

i

) determines the lapse of proper time, whih amounts

to N(t; x

i

) Æt, from the point (x

i

) on the hypersurfae S

t

to the point (x

i

+ Æx

i

)

on S

t+Æt

; the shift N

i

(t; x

i

) determines the tangential shift of the same point,

whih amounts to Æx

i

� N

i

(t; x

i

) Æt.

A quite interesting feature of this funtion and vetor �eld is that they an

be used to study how the system evolves along a series of hypersurfaes given

the ation of a one-parameter transformation group T

t

: the hypersurfae S

t+Æt

is given by S

t+Æt

= T

Æt

S

t

= L

(Æt �)

S

t

, where � is the group generator. The lapse

and shift orresponding to the foliation thus generated an be expressed as:

N

def

= ��

�

u

�

=

1

p

�g

00

�

0

; (1.22a)

N

i

def

= �

�

h

i

�

= �

i

�

g

0i

g

00

�

0

: (1.22b)

1.2.4 The boundary integral

The above-given expression of the boundary integral in Eq. (1.15),

Z

P

(

~

NE �

~

N

A

J

A

); (1.23a)

with

E = 2

p

� ~u

a

~u

b

�

ab

= 2

p

� (�n

�

r

�

� + �k)�E

�

; (1.23b)

J

A

= 2

p

� �

Aa

~u

b

�

ab

= 2

p

� 

Ai

n

j

P

ij

� J

�

A

; (1.23)

E

�

= 2

p

� ~u

a

~u

b

�

�

ab

; (1.23d)

J

�

A

= 2

p

� �

Aa

~u

b

�

�

ab

; (1.23e)

is only valid when the following equation holds:

~

N ~u

�

+

~

N

�

= Nu

�

+N

�

(1.24)

(q.v. e.g. Booth and Mann [11℄). The meaning of ondition (1.24) beomes

immediately lear upon notiing that the vetor �eld Nu

�

+N

�

generates the
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evolution of the hypersurfaes S, and the vetor �eld

~

N ~u

�

+

~

N

�

is always tangent

to B: Eq. (1.24) is equivalent to requiring that the initial surfaeP

0

= �S

0

should

evolve tangentially to the boundary B, i.e. neither `rashing into' nor `oming

out of' B (this is a legitimate request when B is the atual boundary of the

spaetime, but it is not when B is just a temporary, `�titious' boundary to be

eventually pushed to in�nity).

In addition, if the hypersurfaes S are always orthogonal to B, one also has,

in the adapted oordinate system:

~u

�

= u

�

; (1.25a)

~

N = N; (1.25b)

~

N

A

= N

A

; (1.25)

N

r

= 0; (1.25d)

so that the boundary integral (1.23) an be written as:

Z

P

(NE �N

A

J

A

) (1.26a)

with

E = 2

p

� u

a

u

b

�

ab

= 2

p

� (�n

�

r

�

� + �k)�E

�

; (1.26b)

J

A

= 2

p

� �

Aa

u

b

�

ab

= 2

p

� h

Ai

n

j

P

ij

� J

�

A

; (1.26)

E

�

= 2

p

� u

a

u

b

�

�

ab

; (1.26d)

J

�

A

= 2

p

� �

Aa

u

b

�

�

ab

: (1.26e)

(q.v. e.g. Brown and York [17℄, Creighton and Mann [24℄).

If one gives up ondition (1.24), then the expression of the boundary integral,

for a non-dilatoni theory, beomes (q.v. Hawking and Hunter [30℄):

Z

P

(NE �N

i

J

i

) (1.27a)

with

E

def

=

p

�

�

2k � 2

�

osh�

r

�

~u

�

�

�E

�

; (1.27b)

J

i

def

= 2

p

� ~n

j

P

ji

� J

�

i

: (1.27)

Who writes has not found in the literature, nor has alulated personally, the

generalisation of Eqs. (1.27) for a dilatoni theory.

1

1

Note added in translation: We eventually alulated suh a generalisation, q.v. Hamilto-

nians for a general dilaton gravity theory on a spaetime with a non-orthogonal, timelike or

spaelike outer boundary, to appear in Class. Quantum Gravity.
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1.3 Anti-de Sitter spae and blak holes

1.3.1 Anti-de Sitter spae

De�nition

The (D+1)-dimensional anti-de Sitter spae is a pseudo-Riemannian manifold

with negative onstant urvature ��

2

, and an be easily onstruted starting

from the hyperboloid

(y

0

)

2

+ (y

D+1

)

2

�

D

X

i=1

(y

i

)

2

= �

�1

(1.28)

in at spae (R

D+2

; �̂), where �̂ is the metri

�̂

def

= �(dy

0

)

2

� (dy

D+1

)

2

+

D

X

i=1

(dy

i

)

2

: (1.29)

By onstrution, the hyperboloid shares the same group of isometries of the

embedding spae (exept for translations), SO(2; D).

The hyperboloid (1.28) an be desribed parametrially by

y

0

= �

�1

osh � os � (1.30a)

y

i

= �

�1

sinh � 


i

(i = 1; : : : ; D) (1.30b)

y

D+1

= �

�1

osh � sin � (1.30)

with

� � 0; (1.31a)

0 � � < 2�; (1.31b)




i

oordinates on S

D

; (1.31)

so that the intrinsi metri is

ds

2

= �

�2

(� osh

2

� d�

2

+ d�

2

+ sinh

2

� d


2

); (1.32)

where d


2

is the metri on S

D

.

The hyperboloid's topology is S

1

� R

D

, so that timelike urves are present;

in order to have a ausal spaetime, one passes to the universal overing, whih

has topology R

1

� R

D

and the same metri (1.32) but with new oordinate

intervals:

� � 0; (1.33a)

�1 < � < +1; (1.33b)




i

oordinates on S

D

: (1.33)
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By de�nition, (D + 1)-dimensional anti-de Sitter spae is this overing.

One an always �nd a oordinate hart (t;


i

; r) suh that the metri takes

the following form:

ds

2

= �(�

2

r

2

+ 1) dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d


2

; (1.34)

suh hart does not over the whole manifold, but it will be very useful in the

asymptoti analysis of blak-hole solutions.

Causal properties

The ausal struture of anti-de Sitter spae presents interesting features. By

means of the oordinate hange

� = artan(sinh �)

�

0 � � <

�

2

�

; (1.35)

the metri (1.32) beomes

ds

2

=

1

�

2

os

2

�

(�d�

2

+ d�

2

+ sinh

2

� d


2

); (1.36)

thus we see that anti-de Sitter spae is onformal to the interior of the ylin-

der R�S

D�1

, and its boundary (the ylinder) is timelike (Fig. 1.2) | as opposed

e.g. to the boundary of (onformally ompati�ed) Minkowski spae, whih is

null.

This boundary haraterizes all asymptotially anti-de Sitter solutions of the

theory, e.g. blak-hole solutions, and possesses two important (ausal) features:

�rst, it is onformal to D-dimensional ompati�ed Minkowski spae (short of

the addition of two ompatifying points at in�nity � = �1 and � = +1);

seond, an observer an see a light signal going to in�nity and oming bak in

a �nite lapse of his proper time.

The �rst feature allows a D-dimensional onformal �eld theory to live on the

boundary; the seond feature holds some important onsequenes for blak-hole

solutions, for it allows one to have a thermal bath by a �nite amount of energy,

and hene stable solutions (in thermal equilibrium).

1.3.2 Blak holes in anti-de Sitter spae

Fundamental properties

Einstein's equation in four dimensions admits the well-known Shwarzshild's

blak-hole metri as a solution:

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

dr

2

+ r

2

d


2

; (1.37)

whereM is the mass of the blak hole. The harateristis of this solution whih

are of interest to us are the following:
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Figure 1.2: A setion of the Penrose diagram for anti-de Sitter spae.
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1. the presene of an asymptotially at region

2

, i.e. of a boundary like that

of Minkowski spae;

2. spherial symmetry and stationarity

3

, i.e. the invariane under the

group SO(3) (or SO(D) in (D + 1) dimensions) and the existene of a

timelike Killing vetor �eld;

3. the presene of a spaelike polynomial singularity, i.e. a spaelike hypersur-

fae where the urvature diverges, whih makes the manifold geodetially

inomplete;

4. the presene of an event horizon, i.e. a null hypersurfae from whose inte-

rior no physial signal is (lassially) allowed to esape

4

.

Considering a more general gravity theory with a osmologial onstant and

a dilaton, we should like to �nd a solution with similar harateristis, but

that e.g. should have an asymptoti region with non-zero onstant urvature

| i.e. that should be asymptotially anti-de Sitter. Besides, we should like to

study it in two or three dimensions, thus making the omputational mahinery

easier (q.v. Lemos [34℄).

The three-dimensional ase

Dilatoni theory In three dimensions, a dilatoni theory with Lagrangian

1

2�

Z

M

d

3

x

p

�g �(R

M

+ 6�

2

) (1.38)

(where boundary terms have been omitted) possesses a lass of solutions similar

to (1.37) (q.v. Cadoni [18℄):

ds

2

= �

�

�

2

r

2

�

�

2

r

�

dt

2

+

�

�

2

r

2

�

�

2

r

�

�1

dr

2

+ r

2

d�

2

; (1.39a)

� = �r; (1.39b)

it desribes a spaetime whih is asymptotially anti-de Sitter (in the sense that

its urvature is asymptotially onstant and negative), spherially symmetri,

stationary, and with a polynomial singularity and an event horizon: hene we

an interpret it as a blak-hole solution in anti-de Sitter spae; the blak-hole

mass is M = 2��

2

, and the ground state is

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

+ r

2

d�

2

; (1.40a)

� = �r: (1.40b)

2

We shall not onsider the maximal analytial extension of the solution (1.37), given by

the Kruskal-Szekeres metri, whih has two distint asymptoti regions; only one asymptoti

region is of interest to us.

3

In the absene of matter the seond property follows from the �rst by Birkho�'s theorem.

4

We shall not adopt the de�nition of an event horizon as a separation hypersurfae between

two distint asymptoti regions; see Note 2.
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Non-dilatoni theory However, we fae some diÆulties as soon as we on-

sider a non-dilatoni theory. In three dimensions, indeed, an asymptotially

anti-de Sitter blak-hole solution similar to (1.37) exists for the non-dilatoni

ation in four dimensions

1

16�

Z

M

d

4

x

p

�g (R

M

+ 6�

2

); (1.41)

namely

ds

2

= �

�

�

2

r

2

+ 1�

2M

r

�

dt

2

+

�

�

2

r

2

+ 1�

2M

r

�

�1

dr

2

+ r

2

d


2

;

(1.42)

but suh a solution exists only in a number of dimensions greater than three.

Ba~nados, Teitelboim, and Zanelli [8℄ were the �rst to onstrut a three-

dimensional asymptotially anti-de Sitter blak-hole solution, by simply altering

the global topology of anti-de Sitter spae (q.v. also Ba~nados, Henneaux, Teitel-

boim, Zanelli [7℄, Ba~nados, Gombero�, Mart��nez [6℄). The alteration is realized

by taking the quotient spae of the ation of a partiular transformation group

whih ats over anti-de Sitter spae, i.e. by identifying some points; to be more

preise, in the oordinate system where the metri is given by:

ds

2

= �(�

2

r

2

+ 1)dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d�

2

; (1.43)

the points (t; r; �) and (t � 2�A; r; � + 2��) are identi�ed. This amounts to

removing an angular slie equal to 2�(1 � �) and inserting a time jump equal

to 2�A.

The spae thus obtained is loally exatly alike to the original one: it

has negative onstant (not only asymptotially onstant) urvature, isometry

group R � SO(2), and it is a solution for the equations of motion oming from

the following Lagrangian:

1

2�

Z

M

d

3

x

p

�g (R

M

+ 2�

2

): (1.44)

The point identi�ation gives rise to a region whih hosts losed timelike

urves, so that one has to ut this region away, thus rendering the spaetime

geodetially inomplete, and the (spaelike) ut-surfae an be viewed as a sin-

gularity; it is just a `ausal' singularity, and not a polynomial one, beause the

urvature tensors do not diverge near it. When jAj < �� the singularity is

hidden by a null hypersurfae from whose interior no signal may esape, so that

it an be viewed as an event horizon.

Summing up, we have a solution with the following harateristis:

1. it is asymptotially anti-de Sitter, sine it is loally anti-de Sitter

5

;

5

Moreover, its maximal analytial extension has only one asymptoti region, as opposed

to the Shwarzshild solution's extension, whih has two (q.v. Note 2).
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2. it is irularly symmetri (i.e. SO(2)-invariant) and stationary;

3. it has a spaelike ausal singularity;

4. it has an event horizon.

It an naturally be onsidered a blak-hole solution; it is alled a `topologial

blak hole', for the way it is obtained. The parameter M = � is the blak-hole

mass and J = �A is the blak-hole angular momentum.

In order to have a oordinate system without jumps, one makes the following

oordinate transformation:

t 7�! �t� A� (1.45a)

r 7�! r(�

2

�A

2

�

2

)

�

1

2

(1.45b)

� 7�! ���A�

2

t (1.45)

and the new expression for the metri (1.43) is:

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

�A

2

�

2

)

�1

dr

2

+ 2�Adt d� + (r

2

�A

2

)d�

2

:

(1.46)

In this oordinate system, the isometries are generated by the Killing vetor

�elds �=�t and �=��.

Both the dilatoni and the non-dilatoni blak-hole solutions, Eqs. (1.39)

and (1.46) respetively, share the same Penrose diagram for the ground

state (M = 0) and for a blak hole with positive mass (M > 0) (Figs. 1.3

and 1.4).

The bidimensional ase

A gravity theory in two dimensions must neessarily be a dilaton one, be-

ause the urvature is a topologial invariant in two dimensions: an ation like

the Hilbert-Einstein ation (with or without a osmologial onstant) would

not have any dynamis without the introdution of one more degree of freedom,

represented by the dilaton �eld (indeed, General Relativity in two dimensions

has �1 e�etive degrees of freedom).

Hene one adopts Jakiw and Teitelboim's Lagrangian,

1

2

Z

M

d

2

x

p

�g (R

M

+ 2�

2

); (1.47)

whose equations of motion possess blak-hole solutions of a `topologial' kind;

they have the form:

6

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

)

�1

dr

2

; (1.48a)

� = �

0

�r: (1.48b)

6

The arbitrary onstant �

0

shall be often set to unity in the following setions.

22



�

�

�

�

�

�

�

�

r = 0

r = 0

r = +1

Figure 1.3: A setion of the Penrose diagram for the ground state (M = 0) solution

in three-dimensional anti-de Sitter spae.
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Figure 1.4: A setion of the Penrose diagram for the positive-mass blak-hole solu-

tion (M > 0) in three-dimensional anti-de Sitter spae.

23



The metris (1.48a), ontrary to what one ould expet beause of the pres-

ene of the parameter �, are just di�erent parameterizations of two-dimensional

anti-de Sitter spae, overing di�erent regions; it is just the presene of the

dilaton whih makes them geometrially and physially di�erent. The dilaton

must be positive, sine it plays the role of a oupling onstant; this implies that

we must ut the hypersurfae where the dilaton vanishes and remove the region

where it is negative, thus the manifold beomes geodetially inomplete and

a ausal singularity appears. The ut-surfae an be of di�erent ausal kinds,

depending on the parameter �: it is timelike when �

2

< 0, null when �

2

= 0,

and spaelike when �

2

> 0; in the latter ase an event horizon is also present.

Thus, we have three families of solutions with di�erent global topologies, whih

we all AdS

�

2

(�

2

< 0), AdS

0

2

(�

2

= 0), and AdS

+

2

(�

2

> 0). The solution

with �

2

= 0 an be onsidered as the ground state, and that with �

2

> 0 as

a blak-hole solution with positive mass M =

1

2

�

0

��

2

: its harateristis are

similar to Ba~nados, Teitelboim and Zanelli's solution:

1. it is asymptotially and loally AdS

0

2

;

2. it is stationary

7

;

3. it has a spaelike ausal singularity;

4. it has an event horizon.

One should note that we have not said `asymptotially anti-de Sitter', sine

full anti-de Sitter spae is not onsidered among the solutions, and its role

as a ground state is played by AdS

0

2

. Moreover, one should also note that

the two-dimensional topologial blak-hole has two distint asymptoti regions,

as opposed to the three-dimensional blak-hole, whih has one (q.v. preeding

notes); this is simply due to the fat that the sphere S

1

is not onneted, while S

2

is. Apart from that, the Penrose diagrams for the ground state and the blak-

hole solutions are similar to those for the three-dimensional solutions (Figs. 1.5

and 1.6).

Dimensional redutions

Under ertain symmetry onditions, it is possible to redue the Lagrangian

of a gravitational model to the Lagrangian of another gravitational model living

in a less number of dimensions; one immediately understands that this an be

very useful for studying high-dimensional models, sine solutions for the lower-

dimensional Lagrangian shall also be solutions for the higher-dimensional one.

The bidimensional Jakiw-Teitelboim Lagrangian and blak-hole solutions

are just an example of this dimensional redution: they an indeed be obtained

from a four-dimensional Lagrangian with dilaton and eletromagneti �elds (re-

lated to a Brans-Dike Lagrangian, q.v. Cadoni and Mignemi [21℄), or from a

7

One might also say that it is spherially symmetri, but that would be a triviality,

sine SO(1) ontains only the identity element.
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Figure 1.5: Penrose diagram for the ground state (M = 0) solution in bidimensional

anti-de Sitter spae.
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Figure 1.6: Penrose diagram for the blak-hole solution with positive mass (M > 0)

in bidimensional anti-de Sitter spae.
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three-dimensional Lagrangian whose solutions are just the Ban~ados-Teitelboim-

Zanelli blak holes (q.v. Ah�uarro and Ortiz [1℄).

So, suppose that a three-dimensional metri, obtained from a variational

priniple with Lagrangian

L =

Z

M

d

3

x

p

�g (R

M

+�); (1.49)

has omponents whih do not depend on a oordinate �:

ds

2

= g

��

dx

�

dx

�

= f

��

(x

�

) dx

�

dx

�

+�

2

(x

�

) d�

2

; (1.50)

then, it is easy to verify that the Lagrangian (1.49) an be redued to the

bidimensional Jakiw-Teitelboim one:

L =

Z

M

d

2

x

p

�f �(R

M

+�): (1.51)

As a onsequene, every three-dimensional solution (1.50) orresponds to a bidi-

mensional solution

ds

2

= f

��

(x

�

) dx

�

dx

�

; (1.52a)

� = �(x

�

): (1.52b)

Just this orrespondene holds between solutions (1.46) and (1.48a) (when A =

0); from this point of view, the dilaton is nothing but the omponent g

��

of

the three-dimensional metri, whih is singular (oordinate singularity) where

that omponent vanishes. This an be seen as another reason for removing the

regions wherein the dilaton is not positive.

Thermodynamis and entropy

As a very short sketh of blak-hole thermodynamis, onsider a blak hole

desribed by the following parameters: mass M , angular momentum J , eletri

harge Q; then, the following relation holds among their variations:

ÆM =

k

2�

Æ

�

A

4

�

+
 ÆJ +� ÆQ; (1.53)

where A is the area of the event horizon, k is the surfae gravity, 
 is the

angular veloity, and � is the eletri potential; moreover, one also has, for a

stati solution, that

k

2�

= onstant, throughout the event horizon; (1.54)

and that (Hawking's theorem)

Æ

�

A

4

�

� 0: (1.55)
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The similarity between these three relations and the three thermodynamis

laws is evident: a system in an equilibrium state has a onstant quantity, namely

the temperature T ; its entropy S an only inrease; for a system transformation

the relation

ÆE = T ÆS +


i

ÆW

i

; (1.56)

holds, where 


i

ÆW

i

are work terms.

The identi�ation between the quantities

M = E; (1.57a)

T =

k

2�

; (1.57b)

S =

A

4

; (1.57)

whih is only a formal one at a lassial level, was shown to be a physial one

as well at a semilassial level, thanks to Hawking's investigations on blak-hole

evaporation.

Classial system's temperature and entropy an be given a statistial mean-

ing in terms of mirostates, and one would like to give a similar statistial

meaning to blak hole's as well; it appears that this will be ahieved when a

quantum theory of gravity will be at hand. Anti-de Sitter spae proves to be

very interesting in this ontext: we shall see that three-dimensional gravity

on anti-de Sitter spae and its blak-hole solutions an be assoiated with a

two-dimensional onformal dual theory whereupon statistial analysis an be

done. A very important result is that the statistial entropy, alulated through

the dual theory, exatly equals the thermodynami one, whih omes from the

gravity theory.
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Chapter 2

Asymptoti symmetries in

the Hamiltonian and

quasiloal formalisms

2.1 Asymptoti onditions and asymptoti sym-

metries

When a (gravitational) system's surfae at in�nity enjoys some symmetries,

we speak about asymptoti symmetries. To have a learer idea of this, we ought

to state what we mean by `surfae at in�nity' of a gravitational system and by

`symmetries of a surfae at in�nity'.

2.1.1 Surfae at in�nity and asymptoti onditions

In physis, the distintion between the bulk and the surfae of a system is

often very important. In gravity theory, the system usually onsists of a di�er-

entiable manifold M and of all the geometro-physial objets that are de�ned

therein; in this ase the distintion between `bulk' and `surfae' is very alike to

(if we do not want to say \oinident with") the topologial distintion between

`interior' and `boundary', represented by the symbols `

o

M' and `�M'. Nonethe-

less we prefer to use the terms `bulk' and `surfae' rather than `interior' and

`boundary', beause we shall speak about a `surfae' even when the orrespond-

ing topologial onept `boundary' is ill- or non- or just intuitively-de�ned.

This omparison with mathematial terminology is a ue for larifying the

onept of `surfae at in�nity'.
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Compat manifold

Let M be a (D+1)-dimensional ompat manifold with boundary, with

metri g; the notion of surfae or boundary �M is (topologially) well-de�ned

1

:

we an de�ne it as a (regular) embedding F of a D-dimensional manifold B

into M,

F : B �!M; F (B) = �M: (2.1)

loally, it is always possible to hoose a oordinate system (x

0

; : : : ; x

D

) � (x

a

)

on B and (x

0

; : : : ; x

D

; r) � (x

a

; r) � (x

�

) on M suh that the embedding in

oordinates reads:

F : (x

0

; : : : ; x

D

) 7�! (x

0

; : : : ; x

D

; R); R = onst. (2.2)

The embedding indues all various tangent maps, push-forwards and pull-baks

between the various tangent bundles and tensor-�eld spaes on B � �M

and M, e.g.

TF : TM! TB (2.3a)

between the vetor tangent bundles,

F

�

: X(B)! X(�M) (2.3b)

between the vetor-�eld spaes, or

F

�

: �(M)! �(B) (2.3)

between the form spaes (q.v. e.g. Choquet-Bruhat, De Witt-Morette, and

Dillard-Bleik [23℄ or Bishop and Goldberg [10℄ or Curtis and Miller [25℄ or

Shutz [40℄ or Sternberg [41℄). Thus the metri 

ab

and a salar �eld �j

B

in-

dued on B are de�ned as



ab

= F

�

(g

��

) = g

ab

j

r=R

; (2.4a)

�j

B

= F

�

(�) = �j

r=R

; (2.4b)

and every tangent vetor ~v on B an be seen as a tangent vetor v on M:

v

�

= TF (~v

a

) =

�

~v

a

0

�

: (2.5)

Non-ompat manifold

Now let M be a non-ompat, in�nitely extended manifold instead; �rst of

all, from a strit topologial point of view, the boundary �M does not exist

at all (it is the empty set), and we annot speak about embeddings onto �M.

Rather, we use limit and series expansion as `tools' here.

1

We suppose we are dealing with non-pathologial manifolds, of ourse.
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In this ase indeed, by `surfae' we mean an asymptoti region, whih an

be haraterized e.g. by the oordinate r ! 1. More subtle is de�ning the

geometro-physial objets `indued' on this `surfae at in�nity'. At �rst sight,

for example, it would seem reasonable to de�ne the indued objets simply as

their limit for r !1, so that the indued metri or salar �eld would be

1

g

��

def

= lim

r!1

g

��

; (2.6a)

1

�

def

= lim

r!1

�: (2.6b)

But suh a de�nition would soon prove to be unuseful, for vanishing or in�nite

limits may appear: for example, for Minkowski spae we should have:

1

g

��

� diag(�1;+1; : : : ); (2.7)

but for anti-de Sitter we should have, among the various metri omponents:

1

g

tt

�1;

1

g

rr

� 0: (2.8)

We have a better de�nition if we use an r-power series expansion around

in�nity:

1

g

��

def

=

(�)

g

��

+O

�

1

r

�

�

; (2.9a)

1

�

def

=

(�)

� +O

�

1

r

�

�

; (2.9b)

where � and � are exponents whih depend on the metri omponent (��) and

on the salar �eld respetively, and

(�)

g

��

and

(�)

� are the metri omponent g

��

and the salar �eld �, expanded in series till the (1=r

��1

)-th and the (1=r

��1

)-

th powers, respetively. By means of a power series expansion, we an tell what

is relevant to the `surfae at in�nity' from what is not, while avoiding problems

with in�nite or vanishing limits: the metri's `piee'

(�)

g

��

is onsidered as the

e�etive `indued metri at in�nity', and O(1=r

�

) represents a gauge part; this

an in turn be deomposed into an improper gauge (lower order terms) and a

proper gauge (higher order terms, whih vanish faster). The distintion between

improper and proper gauge is made beause the gravitational system's e�etive

physial information resides both in the indued metri at in�nity

(�)

g

��

and

in the improper gauge part (q.v. Benguria, Cordero, e Teitelboim [9℄).

Notie that there appears to be a ertain exibility in hoosing the e�etive

metri, improper gauge, and proper gauge parts of the power series expansion;

we mean suh a hoie when we speak about speifying asymptoti onditions.

The hoie is not arbitrary though, but relies rather on physial and mathemat-

ial grounds. Consider e.g. the (rr) omponent of the anti-de Sitter metri in

two (1.48a) or three dimensions (1.46 with A = 0):

g

rr

= (�

2

r

2

+ �

2

)

�1

=

1

�

2

r

2

�

�

2

�

4

r

4

+

�

4

�

6

r

6

+ � � � ; (2.10)
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one �nds that the most onvenient hoie is taking 1=(�

2

r

2

) + 0=(r

3

) as the

e�etive part, ��

2

=(�

4

r

4

) as the improper gauge part, and O(1=r

5

) as the

proper gauge part: suh a hoie is ditated by the requirement of having the

largest group of asymptoti symmetries with non-diverging harges (q.v. follow-

ing setions); instead, taking e.g. 1=(�

2

r

2

) as the e�etive part and 0=(r

3

) �

�

2

=(�

4

r

4

) as the improper gauge part would yield diverging harges.

2

The exibility in hoosing the asymptoti onditions an be viewed as a

strong point of this formalism, but we interpret it rather as a sign of ambiguity,

sine it often happens that one is able to make the right hoie only a posteriori.

2.1.2 Asymptoti symmetries

The di�erene between bulk- and surfae-symmetries

Given a system whatsoever, it is sometimes possible to deform its bulk and

leave its surfae unaltered, while, for ontinuity reasons, it is never possible to do

the inverse. Hene, if a ertain transformation is not a symmetry of the surfae

(i.e. the surfae is deformed by the transformation), it annot be a symmetry

of the bulk either. Therefore one infers that the number of surfae symmetries

is always equal to or greater than the number of bulk symmetries.

Symmetries at in�nity

One the notions of surfae at in�nity and metri indued at in�nity have

been explained, the notion of symmetry at in�nity follows thene more or less

plainly.

Consider the (left) ation of a (Lie) transformation group G upon a

(pseudo-)Riemannian manifold M; a transformation T belonging to the group

is generated by the vetor �eld �. The metri g

��

is invariant under the

transformation only if its Lie derivative with respet to the generator vanishes:

T(g

��

) = g

��

() L

�

g

��

= 0; (2.11)

when this happens the transformation T is an isometry. This is an example of

symmetry `at �nite'.

Now onsider a surfae at in�nity with indued metri

1

g

��

=

(�)

g

��

+O

�

1

r

�

�

; (2.12)

with spei�ed asymptoti onditions. What shall we mean by symmetry in this

ase? It is the part

(�)

g

��

that is onsidered as the e�etive indued metri, so

every transformation that leaves it invariant is to be alled a symmetry:

T is a symmetry() T(

1

g

��

) =

1

g

��

() T

�

(�)

g

��

�

=

(�)

g

��

+O

�

1

r

�

�

;

(2.13a)

2

Note that the proper gauge part an never be O(1=r

4

), otherwise all physial information,

i.e. the mass parameter �, would be ompletely relegated to it.
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or, in terms of the generator:

T is a symmetry() L

�

1

g

��

= 0

() L

�

(�)

g

��

= O

�

1

r

�

�

:

(2.13b)

Sine the generator � is just a vetor �eld whose omponents are funtions

of the oordinates, it is natural to expand it in r-power series around in�nity,

and we see from Eq. (2.13b) that its expression is determined but for O(1=r



)

terms:

� =

()

�

�

+O

�

1

r



�

: (2.14)

The

()

�

�

(whih is determined up to (1=r

�1

)-order terms) represents the ef-

fetive generator; it generates improper gauge transformations, i.e. transforma-

tions that leave the e�etive indued metri invariant but do hange the metri's

improper gauge part | thus modifying the system's state. The O(1=r



) term

generates proper gauge transformations whih modify the metri's proper gauge

part and thus do not modify the system state (q.v. Benguria, Cordero and Teit-

elboim [9℄).

It is now evident that bulk symmetries are just a subgroup of the asymptoti

symmetries; the latter an even be an in�nite-dimensional group, as we shall

see e.g. in the ase of anti-de Sitter spae.

Till now, we have spoken only about symmetries whih leave the metri

�eld invariant; however, we an onsider other �elds on the manifold M, like

the dilaton � whose invariane is as muh important as the metri's; in this

ase, the symmetry T must satisfy also the following ondition:

T(

1

�) =

1

� () T

�

(�)

�

�

=

(�)

� +O

�

1

r

�

�

; (2.15a)

or

L

�

1

� = 0() L

�

(�)

� = O

�

1

r

�

�

: (2.15b)

This additional requirement an lead to a redution in the number of the initial

(metri) symmetries (we shall all this `symmetry breaking'). Anyway, if one is

interested in having a symmetry group as large as possible, one an disregard

ondition (2.15) and onsider only ondition (2.13); of ourse, this is only feasible

as long as unaeptable physial onsequenes do not arise, suh as diverging

harges.

The Holographi Priniple

We have seen that the symmetries of a gravitational system an always be

traked bak to surfae symmetries; this follows simply from Noether's Theorem:
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let

L =

Z

M

dV

p

�gL (2.16)

be the ation of a gravitational system model; it is invariant under a transfor-

mation T

�

if and only if its Lie derivative with respet to the transformation

generator � vanishes:

L

�

L =

Z

M

dV L

�

(

p

�g L) = 0: (2.17)

Sine

p

�gL is a salar density, and the Lie derivative of a salar density s an

be expressed as L

�

s � �

�

(�

�

s), the preeding equation beomes:

L

�

L �

Z

M

dV �

�

(�

�

p

�gL) = 0; (2.18)

or, by Stokes' Theorem:

L

�

L �

Z

�M

ds

�

�

�

p

�gL = 0: (2.19)

Hene the invariane of a general gravitational ation is only determined by the

asymptoti behaviour of the latter.

However, one may ask whether this is just a onsequene of Noether's Theo-

rem, or of something deeper. For example, the fat that the invariane is shifted

from a (D+1)-dimensional ontext to a D-dimensional one ould be a signal of a

orrespondene between two theories in di�erent dimensions. Suh a onjeture

is just the Holographi Priniple as formulated by Susskind [43℄, about whih

we spoke in the Introdution (q.v. also Aharony, Gubser, Maldaena, Ooguri,

Oz [2℄).

2.1.3 Conserved harges assoiated to the asymptoti

symmetries

A lassial relativisti example

A system's invariane under a group of transformations gives rise to on-

served harges (Noether's Theorem); a plain example from General Relativity

is the following: onsider the equation for the matter stress-energy tensor:

r

�

T

��

= 0; (2.20)

now suppose there is an isometry, generated by the Killing vetor �eld �

�

whih

satis�es

L

�

g

��

�r

(�

�

�)

= 0; (2.21)
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ontrat Eq. (2.20) with the Killing vetor �eld: from Eq. (2.21) and from T

��

's

being symmetri it follows that:

r

�

�

�

T

��

= 0: (2.22)

Go on to integrate this equation over a spatially in�nite four-dimensional vol-

ume V , whose upper and lower boundaries are two arbitrary three-dimensional

spaelike hypersurfaes, �V

t

00

and �V

t

0

, de�ned by the equations t

0

= onst.

and t

00

= onst.:

Z

V

p

�gr

�

�

�

T

��

= 0: (2.23)

The integrand in the last equation is a divergene and an be rewritten as a

sum of integrals over the boundary of V by Stokes' Theorem. If the matter

stress-energy tensor vanishes at spatial in�nity, the sum redues to:

Z

�V

t

00

p

hu

�

�

�

T

��

�

Z

�V

t

0

p

hu

�

�

�

T

��

= 0; (2.24)

sine the two hypersurfaes were arbitrary, this means that the harge de�ned

by

C

t

(�)

def

=

Z

�V

t

p

hu

�

�

�

T

��

(2.25)

is onserved in time.

In the preeding example it is ruial the fat that a Killing vetor �eld,

i.e. a symmetry, exists globally over the whole manifold (`bulk' symmetry). The

harges assoiated to asymptoti symmetries, instead, always require only loal

properties around in�nity; their study and omputation an be made by means

of the Hamiltonian formalism or by Brown and York's quasiloal formalism:

eah formalism is related to the other; they will be disussed in detail in the

following setions.

2.2 Asymptoti symmetries in the Hamiltonian

formalism

2.2.1 Regge and Teitelboim's proedure

The role of asymptoti symmetries beame lear with the development of the

Hamiltonian formalism for gravity theory; the way their harges are alulated

reets just this development.

The `�rst' gravitational Hamiltonian was indeed onstruted following about

the same steps we took in Se. 1.2.2, but without aounting for the boundary

terms whih arise in the various appliations of Stokes' Theorem; hene its form

was simply:

Z

S

(NH +N

i

H

i

); (2.26)
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of ourse, the right equations of motion were found all the same, beause their

form is determined by the volume integral only.

It was noted �rst by Dira and DeWitt [26℄ the fat that the Hamilto-

nian (2.26) needs a boundary term whose form is

E

def

= �

Z

P

p

� ~n

k

(D

i

h

jk

�D

k

h

ij

)h

ij

; (2.27)

This integral is (asymptotially) none but the term

E �

Z

P

NE (2.28a)

with

E

def

=

p

� u

�

u

�

2�

��

�E

�

; (2.28b)

E

�

def

=

p

� u

�

u

�

2�

�

��

; (2.28)

that we have already seen in Se. 1.2.2. DeWitt notied that the gravitational

Hamiltonian would not yield linearized gravity theory and that there would

not be any de�nition of energy without the additional surfae term. In fat

it is the energy, beause the Hamiltonian volume integral vanish identially by

virtue of the onstraints H = 0 and H

i

= 0. From this point of view, quoting

DeWitt, gravity theory is unique among �eld theories in that its energy may

always be expressed as a surfae integral. Therefore, the energy depends upon

the asymptoti harateristis of the gravitational system. This fat is due to

the theory's being di�eomorphism-invariant: many of its degrees of freedom are

unphysial, and maybe the physial ones an be sought for in the boundary.

Regge and Teitelboim [39℄ were the �rst to give a formal and physial justi�-

ation for the presene of a surfae term in the gravitational Hamiltonian; they

showed that, without suh term, the ation would be de�ned in a phase-spae

laking the trajetories that should extremise it. In fat, suppose to strip the

ation (1.15) (without dilaton for simpliity) of its boundary terms and to use

it for the variational priniple: the variation would be:

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

ÆP

ij

)

�

Z

P

p

�

p

h

~n

l

[G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

)

+ 2N

i

ÆP

il

+ (2N

i

P

kl

�N

l

P

ik

Æh

ik

)℄;

(2.29a)

with

G

ijkl

def

=

1

2

p

h (h

ik

h

jl

+ h

il

h

jk

� 2h

ij

h

kl

): (2.29b)
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In order to obtain from the variation above the anonial equations of motion

_

h

ij

=

ÆH

1

ÆP

ij

; (2.30a)

_

P

ij

= �

ÆH

1

Æh

ij

; (2.30b)

it would be neessary for the surfae integrals to vanish. But onsider a physi-

ally reasonable solution suh as Shwarzshild's,

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

dr

2

+ r

2

d


2

; (2.31)

whih behaves asymptotially like (in a Cartesian oordinate system):

g

tt

= �1 +O

�

1

r

�

; (2.32)

g

ij

= Æ

ij

+O

�

1

r

�

; (2.33)

one an easily onvine oneself that Shwarzshild's solution does not make the

surfae integrals in (2.29a) vanish, hene it should not belong to the phase-spae

wherein the ation | stripped from its boundary terms | is well de�ned.

The surfae integral (2.27) does just this: it makes all anomalous surfae

terms in (2.29a) vanish, thus rede�ning the phase-spae in a physially more ap-

propriate manner, enlarging it to ontain physially quite reasonable solutions.

(En passant, we wish to mark that the ounterterm E

�

in (2.28) is absolutely

neessary for suh rede�nition.)

The anomalous non-vanishing boundary terms are stritly related to the

asymptoti onditions (2.32): di�erent asymptoti onditions an make other

non-vanishing boundary terms appear, so that one would need other additional

surfae terms in the original Hamiltonian besides (2.27). Hene, the general

method is the following:

1. alulate the variation of the (bulk) Hamiltonian, thus obtaining the

boundary terms;

2. �x the asymptoti onditions of the lass of solutions that are to belong to

phase-spae (generally all members of this lass are just like `exitations'

of the same `ground state' solution);

3. examine whih surfae integrals in the variation are asymptotially non-

vanishing for the �xed asymptoti onditions;

4. integrate the non-vanishing variational integrals so as to have �nite terms

whih are then subtrated from the original Hamiltonian.
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This way the variational priniple will be well de�ned. It should be noted that

steps 2. and 4. involve an impliit hoie of a referene, or bakground, spaetime

(the `ground state', related to the term E

�

). One ould also hoose to retain all

(integrated) surfae integrals, rather than the non-vanishing ones only; both

hoies yield a well-de�ned Hamiltonian anyway, and the same results. An

important point is that it is not always possible to integrate the variations so as

to have the appropriate integrals to be subtrated from the Hamiltonian. We

shall see some examples of this problems in the next hapter.

The method outlined above has been used by Regge and Teitelboim [39℄ with

Minkowski spae as referene spaetime, by Brown and Henneaux [14℄ with

three-dimensional anti-de Sitter spae as referene spaetime, and by Cadoni

and Mignemi [19℄ for dilatoni gravity on two-dimensional anti-de Sitter spae;

in the present work, we shall adopt this method (but not exlusively) for dila-

toni gravity on three-dimensional anti-de Sitter spae.

We have already seen how the spei�ation of asymptoti onditions deter-

mines a group of asymptoti symmetries. If one lets the Hamiltonian evolve

under an asymptoti-symmetry generator (introduing the latter in the lapse

and shift as explained in Se. 1.2.3), then the boundary term will give the as-

soiated harge (q.v. Benguria, Cordero, Teitelboim [9℄): the bulk term of the

Hamiltonian gives no ontribute thereto, sine the onstraints H and H

i

van-

ish; this fat learly means that the system is indi�erent to the ation of the

generator upon its bulk.

2.2.2 Reently adopted Hamiltonian surfae terms

In the most reent papers on the gravitational Hamiltonian, all steps seen

in Se. 1.2.2 are usually taken in its derivation, and all boundary terms are

retained, so that a general Hamiltonian appears as:

H

def

=

Z

S

(NH +N

i

H

i

) +

Z

P

(

~

NE �

~

N

A

J

A

); (2.34)

where all the information about the harges is thus assoiated with the boundary

integral

Z

P

(

~

NE �

~

N

A

J

A

) =

Z

P

p

� [

~

N(�2n

�

r

�

� + 2�k �E

�

)

�

~

N

A

(2

p

� 

Ai

n

j

P

ij

� J

�

A

)℄;

(2.35)

with

~

N ~u

�

+

~

N

�

= Nu

�

+ N

�

. Sine the Hamiltonian above should be well-

de�ned, one infers that its boundary integral (2.35) should be equivalent to the
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following:

Z

P

p

�

p

h

~n

l

f�G

ijkl

[N�D

k

h

ij

� �

k

(N�)(h

ij

� h

�

ij

)℄

+ �

p

h (2h

il

h

jk

� h

ij

h

kl

)(h

ij

� h

�

ij

)N �

k

�

+ 2�

p

h [�

j

N(� � �

�

)�N�

j

(� � �

�

)℄

+ (2N

i

P

kl

�N

l

P

ik

)(h

ik

� h

�

ik

)

+ 2N

i

(P

il

� P

�

il

)�N

l

P

�

(� � �

�

)g;

(2.36)

whih is just the one derived after Regge and Teitelboim's method. Who writes

has not veri�ed this presumed equivalene. We leave this important question

aside by now; we shall use the term (2.35) to alulate the harge, and only then

shall we draw some onlusions, omparing the results with the ones obtained

by the term �a la Regge and Teitelboim.

The surfae term (2.35) is not the only one to have appeared in the literature;

another one is e.g. Hawking and Hunter's [30℄):

Z

P

(NE �N

i

J

i

) (2.37a)

with

E

def

=

p

�

�

2k � 2

�

osh�

r

�

~u

�

�

�E

�

; (2.37b)

J

i

def

= 2

p

� ~n

j

P

ji

� J

�

i

; (2.37)

whih we have already seen in Se. 1.2.4.

2.3 Asymptoti symmetries in the quasiloal

formalism of Brown and York

2.3.1 Brown and York's quasiloal stress-energy tensor

De�nition

Brown and York [17℄ have developed a formalism for the de�nition of a

quasiloal energy and onserved harges of a gravitational system, by means of

an analogy with the Hamilton-Jaobi lassial formalism for point dynamis.

They onsider the lassial ation whih desribes the unidimensional motion

of a point partile:

S

1

=

Z

dt

�

p

dx

dt

�H

1

(x; p; t)

�

; (2.38)
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by parameterizing the system's trajetory in phase-spae with the parameter �,

the ation takes the form:

S

1

=

Z

�

00

�

0

d�

�

p

dx

d�

�

dt

d�

H

1

(x; p; t)

�

; (2.39)

and its variation is:

ÆS

1

= [terms giving the equations of motion℄

+ p Æxj

�

00

�

0

�H

1

Ætj

�

00

�

0

:

(2.40)

The last two terms in the variation vanish sine the ation's domain is the spae

of trajetories having �xed-valued end-points, hene the ation is extremised

only if the equations of motion hold. Instead, if we take as domain the spae of

trajetories satisfying the equations of motion but having free-valued end-points,

the �rst term in the variation (2.40) vanish, so that

ÆS

1

l

= p

l

Æxj

�

00

�

0

�H

1

l

Ætj

�

00

�

0

; (2.41)

where `l' denotes evaluation in the new domain.

From Eq. (2.41) we have the Hamilton-Jaobi equations

p

l

j

�

00

=

�S

1

l

�x

00

; (2.42a)

H

1

l

j

�

00

= �

�S

1

l

�t

00

; (2.42b)

where x

00

= x(�

00

) and t

00

= t(�

00

). Eq. (2.42b) de�nes the system's energy

at point �

00

, and it is taken by Brown and York as the starting point for the

onstrution of a quasiloal energy from the gravitational ation.

Consider the ation (1.9) restrited to the non-dilatoni ase:

L

def

= �

Z

M

p

�gR

M

+ 2�

Z

S

00

S

0

p

hK

� 2�

Z

B

p

��+ 2�

Z

P

00

P

0

p

� �+ L

�

+ L

mat

;

(2.43)

the domain is the spae of the metris whih indue a �xedD-dimensional metri

on the boundary �M; in fat, upon examining the variation:

ÆL = ��

Z

M

p

�gG

��

Æg

��

+

Z

S

00

S

0

P

��

Æh

��

+

Z

B

�

��

Æ

��

+

Z

P

00

P

0

�

��

Æ�

��

+

Z

B

�

�

ab

Æ

ab

+

1

2

Z

M

p

�g T

��

Æg

ab

;

(2.44)

sine Æh

ij

= Æ

ab

= Æ�

AB

� 0, the ation is extremised if the equations of

motion G

��

=

1

2�

T

��

hold.
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However, also in this ase we an onsider a new domain, i.e. the spae of

the metris on M whih satisfy the equations of motion and are not �xed on

the boundary; in analogy with Eq. (2.41), the ation's variation now redues to:

ÆL

l

=

Z

S

00

S

0

P

l

ij

Æh

ij

+

Z

P

00

P

0

�

l

ij

Æ�

ij

+

Z

B

�

l

ab

Æ

ab

+

Z

B

�

�

ab

Æ

ab

;

(2.45)

where `l' again denotes the new domain.

If we want to look for an expression that should be the analogue of Hamilton-

Jaobi equation (2.42b), we must �rst note that, in the gravitational ase,

the quantity on the boundary is not just the elapsed time (t

00

� t

0

) as it is

in Eq. (2.42b), but it is a metri 

ab

whih determines every timelike and spae-

like interval in the manifold B. The last onsideration leads Brown and York to

the de�nition of a surfae stress-energy tensor assoiated to B:

�

ab

def

=

2

p

�

ÆL

l

Æ

ab

=

2

p

�

(�

l

ab

��

�

ab

) = 2(�

l

ab

��

�

ab

): (2.46)

In the above de�nition, it is important to note that the matter term L

mat

as

well ontributes to the tensor �

ab

, whih thus haraterizes the whole gravity-

matter system. That does not happen with the usual stress-energy tensor

T

��

�

2

p

�g

ÆL

mat

Æg

��

; (2.47)

whih haraterizes only the system's matter �elds.

Additive ounterterms

The term L

�

[

ab

℄ in Eq. (2.43), whih depends only on the metri indued

on B, is the analogue of an arbitrary funtion S

0

subtrated from the lassial

ation (2.38), whih depends only on the oordinates of the end-points of the

system's trajetory:

S[x; p℄ = S

1

[x; p℄� S

0

[x

0

; x

00

; t

0

; t

00

℄; (2.48)

this funtion does not ontribute to the equations of motion sine its variation

vanishes by virtue of the end-point value �xation; however, its presene does

shift the de�nition of the zero-point energy:

H

l

j

�

00

= H

1

l

j

�

00

�H

0

j

�

00

= �

�

�S

1

l

�t

00

�

�S

0

�t

00

�

: (2.49)

In an analogous way, the funtional L

�

does not alter the equations of motion, but

does intervenes in the de�nition of the momentum onjugate to 

ab

and hene in

the de�nition of the quasiloal stress-energy tensor, as Eq. (2.46) plainly shows.
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We an �nd some requirement to be satis�ed by the ounterterm, by reason-

ing as follows: the various tangential and parallel projetions of the quasiloal

tensor with respet to the boundary B give the energy, momentum, and stress

densities:

E

def

=

p

� ~u

a

~u

b

�

ab

= �

ÆL

l

ÆN

; (2.50a)

J

A

def

= �

p

� �

Aa

~u

b

�

ab

=

ÆL

l

ÆN

A

; (2.50b)

s

AB

def

=

p

� �

A

a

�

B

b

�

ab

= 2

ÆL

l

Æ�

AB

; (2.50)

their expliit form is (note that no dilaton �eld is onsidered at the moment):

E = 2�

p

� k �E

�

; (2.51a)

J

A

= �2

p

� 

Ai

n

j

P

ij

� J

�

A

; (2.51b)

s

AB

= 2�

p

� [k

AB

+ �

AB

(n

�

u

�

r

�

u

�

� k)℄� s

�

AB

: (2.51)

The quantities E and J

A

are the same as those in the surfae term (2.35); we

have already mentioned the fat that they depend exlusively on the anonial

variables only if the quantities E

�

and J

�

A

do. For this to happen, it is neessary

that the ounterterm L

�

be a linear funtional of the (boundary) lapse and shift:

L

�

def

=

Z

B

(

~

NE

�

�

~

N

A

J

�

A

): (2.52)

De�nition with respet to a referene spaetime A way to de�ne the

ounterterm L

�

with respet to a referene spaetime (`ground state') is the

following: one hooses a partiular solution (M

�

; g

�

��

) of the equations of motion

(preferably one with nie properties suh as statiity), to be onsidered as a

ground state, and isometrially embeds the boundary B therein; the quantitiesE

�

and J

�

A

are then de�ned as the energy and the momentum as alulated in the

embedding; hene it is obvious that E and J

A

will vanish for the ground state.

As a onsequene of this de�nition of L

�

, the term s

�

AB

is de�ned as

s

�

AB

def

= 2

ÆL

�

Æ�

AB

= 2

~

N

ÆE

�

Æ�

AB

+

~

N

C

ÆJ

�

C

Æ�

AB

; (2.53)

whih follows from the variation

ÆL

�

=

Z

B

"

E

�

Æ

~

N + J

�

A

Æ

~

N

A

+

 

~

N

ÆE

�

Æ�

AB

+

~

N

A

ÆJ

�

A

Æ�

AB

!

Æ�

AB

#

; (2.54)

suh a de�nition for s

�

AB

is not equivalent to the de�nition with respet to the

referene spaetime | as opposed to E

�

and J

�

A

's de�nitions.

This method of de�ning the ounterterm L

�

is physially reasonable, but

presents two problems: �rst, the hoie of the referene spaetime; and seond,
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the fat that the isometrial embedding may happens not to be unique or even

not to exist. Anyway, suh an embedding does exist and is unique in important

examples like Minkowski or anti-de Sitter spae; hene many authors, besides

Brown and York, like Hawking and Horowitz [29℄, Hawking and Hunter [30℄,

Booth and Mann [11, 12℄, Brown, Creighton and Mann [15℄, Brown, Lau and

York [16℄, Bose and Dadhih [13℄, use this ounterterm de�nition

3

Intrinsi de�nition Balasubramanian and Kraus [5℄ have reently proposed

an alternative way of speifying the surfae term L

�

, whih uses the main in-

trinsi metri objets of B (like metri, volume element, salar urvature, Rii

and Riemann tensors, et.) and the requirement that the system's harges be

asymptotially divergeneless. This method is geometrially reasonable (no

referene-spaetime hoies or embedding problems), but yields anomalous re-

sults sometimes (e.g., the energy inside an ellipsoidal surfae in Minkowski spae

is di�erent from that inside a sphere, whih obviously vanishes). However, as

has been notied by Lau [33℄, the `intrinsi' method and the `bakground' one

are asymptotially equivalent. We shall make use of this equivalene in some of

the alulations to follow.

The `intrinsi' method is used, besides Balasubramanian and Kraus [5℄ and

Lau [33℄, also by Mann [36℄, and by Emparan, Johnson and Myers [28℄.

Equation of motion for the quasiloal tensor and onserved harges

The similarity between the de�nitions of the matter tensor T

��

and of the

quasiloal one �

ab

extends to a similarity in their equations of motion.

In fat, the requirement that the ations L and L

mat

be (separately) invariant

under di�eomorphisms yields the B-boundary onstraint equation

4

:

2�

b

�

l

ab

= �

a

�

n

�

T

��

; (2.55)

whene, substituting the de�nition (2.46), we have the equation of motion for

the quasiloal tensor:

�

b

�

ab

= �

a

�

n

�

T

��

: (2.56)

The equation above di�ers from the usual energy-stress tensor's one (r

�

T

��

=

0) by the presene of a soure term.

Now, suppose that B possesses a Killing vetor �eld �

a

:

L

�



ab

��

(a

�

b)

= 0; (2.57)

ontrating Eq. (2.56) with �

a

, using Eq. (2.57), and integrating between two

arbitrary spaelike surfaes P

t

0

and P

t

00

in B, one has:

Z

t

00

t

0

p

� �

a

�

b

�

a

b

= �

Z

P

t

00

P

t

0

p

� �

a



a�

n

�

T

��

; (2.58)

3

In fat, the de�nitions given by some of the listed authors di�er slightly from the one

presented here; but all the listed authors' de�nitions use a bakground spaetime.

4

Note that this equation is not equivalent to the Einstein equation with one index projeted

normally, and the other index projeted tangentially to B, as Brown and York [17℄ say.
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whih, by Stokes' Theorem, is just:

�

Z

P

00

t

p

� �

a

~u

b

�

ab

+

Z

P

0

t

p

� �

a

~u

b

�

ab

= �

Z

t

00

t

0

p

� �

a



�a

n

�

T

��

; (2.59)

hene we �nd Brown and York's equation for the harge assoiated to the Killing

vetor �

a

; it an be written as:

Q

P

t

00

(�) �Q

P

t

0

(�) =

Z

P

t

00

P

t

0

p

� �

a



a�

n

�

T

��

; (2.60)

where

Q

P

t

(�)

def

=

Z

P

t

p

� �

a

~u

b

�

aa

(2.61)

is the harge assoiated to the killing vetor �eld �

a

evaluated at P

t

.

One an see that the hargeQ

P

(�) does not depend on the hoie of a spei�

surfae P (so that the index `

P

' an be omitted) only if, in B, one has T

��

= 0

(suÆient ondition) or n

�

T

��



�a

�

a

= 0 (neessary ondition); in suh ases

the harge is onstant in time and represents a onserved harge assoiated to

the Killing vetor �. Note that the harge depends on the normalisation of the

Killing vetor, indeed it is evident that Q(�) = Q(�). When the Killing vetor

is timelike (hene the hypersurfae B is stationary), � � �=�t, its harge evalu-

ated at P is identi�ed with the energy inside whihever spaelike hypersurfae S

having P as its boundary.

Note that the pseudo-vetor

p

� ~u

b

�

ab

in Eq. (2.61) an be deomposed as

follows by means of Eqs. (2.50):

p

� ~u

b

�

ab

� �E~u

a

� J

a

; (2.62)

where E and J

a

are just the energy and momentum densities of Eq. (2.35): this

implies that the expression for the harge (2.61) is just (minus) the Hamiltonian

boundary integral (2.35), with �

a

=

~

N ~u

a

+

~

N

a

. It follows that using the quasilo-

al formalism for alulating the asymptoti-symmetry harges is equivalent to

using the Hamiltonian method disussed previously, but with a boundary term

like (2.35) instead of a Regge-Teitelboim one.

2.3.2 Quasiloal tensor for a dilaton gravity theory

De�nition

Now we wish to extend the de�nition of the quasiloal stress-energy tensor

to the ase of a dilaton gravity theory desribed by the ation (1.9):

L

def

= �

Z

M

p

�g �(R

M

+�) + 2�

Z

S

00

S

0

p

h �K

� 2�

Z

B

p

� ��+ 2�

Z

P

00

P

0

p

� �� + L

�

+ L

mat

:

(2.63)
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The variation of the ation above (omitting the terms oming from the vari-

ation of the matter �elds) is:

ÆL =

Z

M

(�

��

Æg

��

+�

�

Æ�) +

Z

S

00

S

0

(P

��

Æh

��

+ P

�

Æ�)

+

Z

B

(�

��

Æ

��

+�

�

Æ�) +

Z

P

00

P

0

(�

��

Æ�

��

+ �

�

Æ�)

+

Z

B

(�

�

ab

Æ

ab

+�

�

�

Æ�) +

Z

M

1

2

p

�g T

��

Æg

ab

;

(2.64)

we onsider the variation in a on�guration-spae where the equations of motion

are satis�ed and the indued boundary metris are not �xed:

ÆL

l

=

Z

S

00

S

0

(P

l

��

Æh

��

+ P

�

l

Æ�) +

Z

B

(�

l

��

Æ

��

+�

�

l

Æ�)

+

Z

P

00

P

0

(�

l

��

Æ�

��

+ �

�

l

Æ�) +

Z

B

(�

�

ab

Æ

ab

+�

�

�

Æ�);

(2.65)

and we de�ne the quasiloal stress-energy tensor:

�

ab

def

=

2

p

�

ÆL

l

Æ

ab

=

2

p

�

(�

l

ab

��

�

ab

) = 2(�

l

ab

��

�

ab

): (2.66)

Again, the normal and tangential projetions to B give the energy, momentum,

and stress densities:

E

def

=

p

� ~u

a

~u

b

�

ab

= �

ÆL

l

ÆN

; (2.67a)

J

A

def

= �

p

� �

Aa

~u

b

�

ab

=

ÆL

l

ÆN

A

; (2.67b)

s

AB

def

=

p

� �

A

a

�

B

b

�

ab

= 2

ÆL

l

Æ�

AB

; (2.67)

but this time their expliit forms are:

E = 2�

p

� (�k � ~u

�

r

�

�)�E

�

; (2.68a)

J

A

= �2

p

� 

Ai

n

j

P

ij

� J

�

A

; (2.68b)

s

AB

= 2�

p

� f�[k

AB

+ �

AB

(n

�

u

�

r

�

u

�

� k)℄

+ �

AB

~u

�

r

�

�g � s

�

AB

:

(2.68)

Counterterms

De�nition with respet to a referene spaetime As in the non-dilatoni

ase, the quantitiesE and J

A

depend exlusively on the anonial variables only

if E

�

and J

�

A

do. Hene, just like in the non-dilatoni ase, we may require the

ounterterm L

�

to be a linear funtional of the (boundary) lapse and shift:

L

�

def

= �

Z

B

(

~

NE

�

�

~

N

A

J

�

A

); (2.69)
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and its onstrution with respet to the referene spaetime follows the same

steps as in the non-dilatoni ase, but with the additional requirement that the

embedding of B into the referene spaetime should be not only isometri, but

`isodilatoni' as well.

From the variation of ylio, whih now reads:

ÆL

�

= �

Z

B

"

E

�

Æ

~

N + J

�

A

Æ

~

N

A

+

 

~

N

ÆE

�

Æ�

AB

+

~

N

A

ÆJ

�

A

Æ�

AB

!

Æ�

AB

+

 

~

N

ÆE

�

Æ�

+

~

N

A

ÆJ

�

A

Æ�

!

Æ�

#

;

(2.70)

we obtain the expressions for s

�

AB

and �

�

�

:

s

�

AB

def

= 2

ÆL

�

Æ�

AB

= 2

~

N

ÆE

�

Æ�

AB

+

~

N

A

ÆJ

�

A

Æ�

AB

; (2.71a)

�

�

�

def

=

ÆL

�

Æ�

=

~

N

ÆE

�

Æ�

+

~

N

A

ÆJ

�

A

Æ�

: (2.71b)

Note that both s

�

AB

and �

�

�

are not equivalent to those alulated with respet

to the referene spaetime.

This method of onstruting a ounterterm su�ers the problems that we saw

in the non-dilatoni ase, namely the hoie of the referene spaetime and the

existene and uniqueness of the embedding; moreover, the additional diÆulty

of having an isodilatoni embedding now arises. This method is adopted by

Lau [32℄.

Intrinsi de�nition Balasubramanian and Kraus' method, aording to

whih the ounterterm is onstruted from the boundary intrinsi metri ob-

jets by demanding non-diverging harges, is no more univoal when applied

to a dilatoni theory. This happens beause a salar �eld (the dilaton) is

now to be inluded among the boundary intrinsi metri objets, and there is

almost no limit to the number of intrinsi terms that an be onstruted from

a salar �eld, and of the terms whih give a �nite ontribution to the harges,

in partiular. We shall learly see this fat in the alulations to follow.

Equation of motion for the quasiloal tensor

The equation of motion for the quasiloal tensor needs a more areful analysis

in this ase, beause of the presene of the dilaton.

from the fat that the total and the matter ations L and L

mat

are

di�eomorphism-invariant, we have the onstraint on B:

2�

b

�

l

ab

= �

�

l



ab

�

b

� � 

a

�

n

�

T

��

; (2.72)

whene the equation of motion

�

b

�

ab

= �

�

l



ab

�

b

� � 

a

�

n

�

T

��

(2.73)
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follows from the de�nition (2.66) of the quasiloal tensor.

Eq (2.73) is very di�erent from Eq. (2.56): it ontains an additional dilatoni

term, �

�

l



ab

�

b

�, whih ats as soure together with the semi-projetion of the

matter stress-energy tensor 

a

�

n

�

T

��

. The presene of the additional dilatoni

term has two main onsequenes, whih do not appear in Brown and York's

analysis: �rst, even in the absene of matter there an be non-onserved harges,

due to the new soure term; seond, the subtration of a ounterterm beomes

more subtle. We go on analysing these two points in more detail.

Conditions for harge onservation

Contrat Eq. (2.73) with a Killing vetor �eld for B, �, and integrate between

two arbitrary spaelike surfaes in B so as to obtain:

Z

t

00

t

0

p

� �

a

�

b

�

a

b

=

Z

t

00

t

0

p

� (�

�

l

�

a

�

a

� � �

a



a�

n

�

T

��

); (2.74)

whih, by Stokes' Theorem, is equivalent to

Q

P

t

00

(�) �Q

P

t

0

(�) = �

Z

t

00

t

0

p

� (�

�

l

�

a

�

a

� � �

a



a�

n

�

T

��

); (2.75)

where the harge is de�ned as

Q

P

t

(�)

def

=

Z

P

t

p

� �

a

~u

b

�

ab

: (2.76)

One an learly see that the vanishing of the matter soure term, �

a



a�

n

�

T

��

,

does not neessarily imply harge onservation anymore, for now we have also

a dilatoni term whih an be non-vanishing even when the matter term does

vanish. For this reason, one an require the following additional ondition for

the Killing vetor �eld �, like Creighton and Mann [24℄ do:

L

�

� � �

a

�

a

� = 0; (2.77)

i.e. one demands that the vetor �eld � be a symmetry not only for the metri

�eld, but also for the dilaton �eld. With this requirement the integrands in

Eq. (2.74) beome

�

b

�

a

�

a

b

= ��

a



a�

n

�

T

��

; (2.78)

and upon integration one now obtains:

Q

P

t

00

(�) �Q

P

t

0

(�) = �

Z

t

00

t

0

p

� �

a



a�

n

�

T

��

; (2.79)

whih is analogous to Eq. (2.58).

Creighton and Mann's requirement (2.77) is quite natural beause the system

is haraterized by both the metri and the dilaton �elds. Moreover Eq. (2.77)
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is usually satis�ed in the de�nition of the quasiloal energy, sine the latter

quantity is usually assoiated with a timelike Killing vetor �eld and the dilaton

is usually independent of time. Nevertheless ondition (2.77) redues the number

of symmetries in the system.

This fat is quite general: the presene of a non-onstant dilaton breaks the

system's symmetries (isometries and asymptoti symmetries), and only a part

of them survives; this part usually gives onserved harges just like the mass;

the remaining part gives either in�nite or �nite but non-onserved harges. In

the seond eventuality, we an disregard ondition (2.77) if we are interested

in having a large number of symmetries rather than harges, sine we have no

unaeptable physial onsequenes, like diverging harges. In fat, in studying

asymptoti symmetries, we shall not be worried about the strit holding of

Eq. (2.77), and Eq. (2.75) will be our equation for harge onservation.

2.3.3 Problems with Brown and York's formalism in the

asymptoti limit

In Brown and York's de�nition for the harge assoiated to a vetor �eld �,

it is of fundamental importane the requirement that suh a vetor �eld be a

Killing vetor �eld for the boundary B,

L

�



ab

��

(a

�

b)

= 0; (2.80)

whih implies

�

a

�

a

= 0; (2.81)

in fat this requirement is a ondition for the following passages, whih lead

from Eq. (2.73) to Eq. (2.58):

�

a

�

b

�

b

a

=�

b

(�

a

�

b

a

)� �

b

a

�

b

�

a

=�

b

(�

a

�

b

a

)�

1

2

�

ab

�

(a

�

b)

=�

b

(�

a

�

b

a

);

(2.82)

where in the last passage index symmetry of �

ab

has been used, besides

Eq. (2.80). Even this other following series of passages, that leads from

Eq. (2.73) to Eq. (2.74), makes use of ondition (2.81):

��

a

�

a

(��

�

l

) = ��

a

(�

a

��

�

l

) + ��

�

l

�

a

�

a

= ��

a

(�

a

��

�

l

): (2.83)

In the following hapter, we should like to use Brown and York's formalism

to alulate the harges assoiated to the generator of an asymptoti symmetry;

but suh a generator will not be a Killing vetor �eld for B in general; it will

not even be tangent to B in general. For this reason we shall adapt Brown and

York's formulation to our need as follows: we shall take the projetion of the

generator � onto B, �

ka

def

= 

a

�

�

�

, and require it to be a Killing vetor �eld for B

only asymptotially :

L

�

k



ab

��

(a

�

k

b)

r!1

���! 0; (2.84)
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whene

�

a

�

ka

r!1

���! 0: (2.85)

Note that, for the harge-onservation equations to be valid, we ould require

the onditions:

�

ab

�

(a

�

k

b)

r!1

���! 0 (2.86a)

and

��

�

l

�

a

�

ka

r!1

���! 0: (2.86b)

This manoeuvre, whih is neessary if we want to use the quasiloal formal-

ism together with the asymptoti symmetries, signals a de�ieny of Brown and

York's formalism in dealing with general symmetries. We will disuss about this

in detail in the onluding Chapter.
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Chapter 3

Asymptoti symmetries in

anti-de Sitter spae

3.1 Hamiltonian formalism

3.1.1 An example: asymptoti symmetries in Minkowski

spae

As an introdutive example of the analysis of asymptoti symmetries we on-

sider a lass of solutions for General Relativity in a quadridimensional spaetime

whose ground state is at spae

1

ds

2

= �dt

2

+ Æ

ij

dx

i

dx

j

: (3.1)

The Lagrangian in this ase is:

L = �

Z

M

p

�gR

M

+ 2�

Z

S

00

S

0

p

hK � 2�

Z

B

p

� �

+ 2�

Z

P

00

P

0

p

� �+ L

�

;

(3.2)

and the ation in anonial form is:

S =

Z

t

00

t

0

�

Z

S

(P

��

_

h

��

�NH �N

i

H

i

)�

Z

P

(

~

NE �

~

N

i

J

i

)

�

;

(3.3)

so that the Hamiltonian takes the following form:

H =

Z

S

(NH +N

i

H

i

) +

Z

P

(

~

NE �

~

N

i

J

i

): (3.4)

1

Cartesian oordinates will be used in the present setion
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Firstly, we onsider the bulk Hamiltonian only:

H

1

=

Z

S

(NH +N

i

H

i

); (3.5)

and we proeed to �nd its suitable boundary term by Regge and Teitelboim's

method (q.v. Se. 2.2.1). Therefore we must ompute the variation of Eq. (3.5):

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

[�G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

℄;

(3.6)

and we must establish the asymptoti onditions for a given lass of solutions:

we hoose the lass of stati, spherially simmetri, asymptotially at solutions,

whih are desribed by the following asymptoti onditions:

g

tt

= �1 +O

�

1

r

�

; (3.7)

g

ij

= Æ

ij

+O

�

1

r

�

: (3.8)

The asymptoti symmetry group of this asymptoti onditions is generated

by

A

�

=

�

1 +O

�

1

r

��

�

�x

�

; (3.9a)

B

�

=

�

�

�

�

x

�

+O

�

1

r

��

�

�x

�

with �

��

= ��

��

; (3.9b)

where one should notie the presene of a proper gauge part O(1=r); these

generators form the Poinar�e group.

For simpliity, we onsider the ation of the generator A

0

only, so that the

lapse and shift are, by Eqs. (1.22),

N = 1 +O

�

1

r

�

; (3.10a)

N

i

= O

�

1

r

�

; (3.10b)

upon alulation, one an see that the surfae term of Eq. (3.6) whih does not

vanish is:

��

Z

P

p

�

p

h

~n

l

G

ijkl

ND

k

Æh

ij

; (3.11)
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and integrating its variation we �nd

�J = ��

Z

P

p

� ~n

k

N(D

i

h

jk

�D

k

h

ij

)h

ij

; (3.12)

whih is just the term to be subtrated from the Hamiltonian (3.5) so as to

make the latter well-de�ned.

If we alulate the harge assoiated with the generatorA

0

for Shwarzshild's

solution (whih belong to the lass of solutions here onsidered), we �nd that

it is just the blak-hole mass:

J

�

�

�t

�

= H

�

�

�t

�

= �

Z

P

p

� ~n

k

(D

i

h

jk

�D

k

h

ij

)h

ij

=M: (3.13)

3.1.2 Asymptoti symmetries in three-dimensional anti-

de Sitter spae

First hoie for the asymptoti onditions

We go on to make an analogous analysis for a three-dimensional theory with

a osmologial onstant; our analysis follows Brown and Henneaux's [14℄.

As we saw in Se. 1.3.2, a simple solution for this ase is (three-dimensional)

anti-de Sitter spae; there are blak-hole solutions as well,

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

�A

2

�

2

)

�1

dr

2

+ 2�Adt d� + (r

2

�A

2

)d�

2

;

(3.14)

and it is quite natural to onsider these solutions as exitations of the ground

state

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

+ r

2

d�

2

: (3.15)

Hene the exited states share the following asymptoti onditions:

g

tt

= ��

2

r

2

+O(r

0

); (3.16a)

g

t�

= O(r

0

); (3.16b)

g

tr

= 0; (3.16)

g

��

= r

2

+O(r

0

); (3.16d)

g

�r

= 0; (3.16e)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

: (3.16f)

The asymptoti symmetry group for these onditions is generated by the vetor

�elds �=�t and �=�� (proper gauge part omitted).

Consider the Hamiltonian

H

1

=

Z

S

(NH +N

i

H

i

); (3.17)
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whose variation is

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

[�G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

℄:

(3.18)

If we onsider the evolution led by a generator whih is a linear ombination

of �=�t and �=��, i.e. with lapse and shift give by:

N = �r +O

�

1

r

�

; (3.19a)

N

�

= O

�

1

r

2

�

; (3.19b)

N

r

= O

�

1

r

�

; (3.19)

we �nd that the non-vanishing term for the onditions (3.16) is

�

Z

P

p

�

p

h

~n

l

(�G

ijkl

ND

k

Æh

ij

+ 2N

i

ÆP

il

); (3.20)

whih leads to the surfae term for the Hamiltonian:

J =

Z

P

p

�

�

p

h

�

~n

l

[�G

ijkl

ND

k

h

ij

+ 2N

i

(P

il

� P

�

il

)℄: (3.21)

Calulation of the harges assoiated to �=�t and �=�� yields:

J

�

�

�t

�

= H

�

�

�t

�

= � (3.22a)

J

�

�

��

�

= H

�

�

��

�

= �A (3.22b)

and we �nd the mass and the angular momentum.

Seond, more general hoie of asymptoti onditions

We should like to onsider a more general asymptoti behaviour than (3.16),

hoping thus to enrih the system's asymptoti symmetry group with new sym-

metries: it would be desirable to reover the full isometry group of anti-de Sitter

spae | just as it happened with the Poinar�e group for Minkowski spae in

the previous example.

We an try to realize this purpose by seeking for the smallest lass of asymp-

toti onditions whih ontains onditions (3.16) and is losed under the ation

of anti-de Sitter spae's isometries. In order to do this we an simply apply
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the isometry generators to onditions (3.16) repeatedly; thus we �nd the new

asymptoti onditions:

g

tt

= ��

2

r

2

+O(r

0

); (3.23a)

g

t�

= O(r

0

); (3.23b)

g

tr

= O

�

1

r

3

�

; (3.23)

g

��

= r

2

+O(r

0

); (3.23d)

g

�r

= O

�

1

r

3

�

; (3.23e)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

: (3.23f)

But, to our surprise, the symmetry group for the onditions (3.23) is not

just SO(2; 2) (even though it does ontain SO(2; 2) by onstrution): rather, it is

the in�nite-dimensional group of onformal transformations in two dimensions:

� =

�

"(t; �) +

1

�

2

r

2

�"(t; �) +O

�

1

r

4

��

�

�t

+

�

!(t; �) +

1

�

2

r

2

�!(t; �) +O

�

1

r

4

��

�

��

+

�

r�(t; �) +O

�

1

r

��

�

�r

;

(3.24a)

with

�

2

�

�

"(t; �) = �

t

!(t; �); (3.24b)

�

t

"(t; �) = �

�

!(t; �) = ��(t; �); (3.24)

�"(t; �) = �

1

2�

2

�

t

�(t; �); (3.24d)

�!(t; �) =

1

2

�

�

�(t; �): (3.24e)

Beause of the periodiity in the angular variable, we an expand the genera-

tors (3.24) in a Fourier series, obtaining the following ountable basis:

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

os(n�t) os(n�) +O

�

1

r

4

��

�

�t

�

��

1 +

n

2

2�

2

r

2

�

sin(n�t) sin(n�) +O

�

1

r

4

�

℄

�

��

+

�

rn sin(n�t) os(n�) +O

�

1

r

��

�

�r

(3.25a)
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B

n

= B

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

sin(n�t) sin(n�) +O

�

1

r

4

��

�

�t

�

��

1 +

n

2

2�

2

r

2

�

os(n�t) os(n�) +O

�

1

r

4

��

�

��

+

�

rn os(n�t) sin(n�) +O

�

1

r

��

�

�r

(3.25b)

C

n

= �C

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

sin(n�t) os(n�) +O

�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�

os(n�t) sin(n�) +O

�

1

r

4

��

�

��

�

�

rn os(n�t) os(n�) +O

�

1

r

��

�

�r

(3.25)

D

n

= �D

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

os(n�t) sin(n�) +O

�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�

sin(n�t) os(n�) +O

�

1

r

4

��

�

��

+

�

rn sin(n�t) sin(n�) +O

�

1

r

��

�

�r

:

(3.25d)

The basis generators satisfy the following ommutation relations:

[A

n

; A

m

℄ =

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26a)

[B

n

; B

m

℄ =

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26b)

[C

n

; C

m

℄ = �

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26)

[D

n

; D

m

℄ = �

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26d)

[A

n

; B

m

℄ = �

1

2

(n�m)D

n+m

�

1

2

(n+m)D

n�m

; (3.26e)

[A

n

; C

m

℄ = �

1

2

(n�m)A

n+m

+

1

2

(n+m)A

n�m

; (3.26f)

[A

n

; D

m

℄ =

1

2

(n�m)B

n+m

�

1

2

(n+m)B

n�m

; (3.26g)

[B

n

; C

m

℄ = �

1

2

(n�m)B

n+m

+

1

2

(n+m)B

n�m

; (3.26h)

[B

n

; D

m

℄ =

1

2

(n�m)A

n+m

�

1

2

(n+m)A

n�m

; (3.26i)

[C

n

; D

m

℄ = �

1

2

(n�m)D

n+m

+

1

2

(n+m)D

n�m

; (3.26j)

and so they form an algebra isomorphi to a diret sum of two Virasoro algebras,

whih is just the algebra of onformal transformations in two dimensions (apart

from the entral harge).

The lapse and shift assoiated to the generators (3.24) are

N = �r +O

�

1

r

�

; (3.27a)

N

�

= O

�

1

r

2

�

; (3.27b)
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N

r

= O

�

1

r

�

; (3.27)

so that the non-vanishing term in the variation (3.18) is

Z

P

p

�

p

h

~n

l

[�G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

) + 2N

i

ÆP

il

℄; (3.28)

and the well-de�ned Hamiltonian is

H =

Z

S

(NH +N

i

H

i

)

�

Z

P

p

�

p

h

~n

l

f�G

ijkl

[ND

k

h

ij

� �

k

N (h

ij

� h

�

ij

)℄

+ 2N

i

(P

il

� P

�

il

)g:

(3.29)

The only non-vanishing harges for a solution like (3.14) are the ones asso-

iated to the generators A

0

=

1

�

�

�t

and B

0

=

�

��

:

J[A

0

℄ =

�

�

; (3.30a)

J[B

0

℄ = �A; (3.30b)

so we �nd again the mass and the angular momentum. But we an look for

new harges oming from solutions di�erent from (3.14) but whih belong to

the asymptoti lass (3.23). We an generate these kinds of solutions by in-

�nitesimally deforming the ground state by means of a generator (3.25):

g

��

= g

�

��

+ L

��

g

�

��

; (3.31)

thus we �nd the entral harges

J[A

n

℄ =

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�C

m

g

�

��

; (3.32a)

J[B

n

℄ = �

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�D

m

g

�

��

: (3.32b)

3.1.3 Asymptoti symmetries in two-dimensional anti-

de Sitter spae with dilaton �eld

In the �rst hapter we mentioned the fat that a lassial (i.e. non-dilatoni)

gravity theory annot exist in two dimensions, sine the salar urvature is a

topologial invariant and The Hilbert-Einstein ation has no dynamis. It is

neessary to introdue at least one more degree of freedom into the theory,

e.g. a dilaton �eld. As a onsequene, the asymptoti analysis of suh a two-

dimensional theory will have to onsider the dilaton's asymptoti behaviour as

well. In this ontext �nds its plae the work by Cadoni and Mignemi [19℄, whih

we are going to follow in this setion.
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We take as ground state the following solution of the equations of motion:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

; (3.33a)

� = �

0

�r; (3.33b)

and as `exited' solutions:

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

)

�1

dr

2

; (3.34a)

� = �

0

�r; (3.34b)

whih behave at in�nity as follows:

g

tt

= ��

2

r

2

+O(r

0

); (3.35a)

g

tr

= 0; (3.35b)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.35)

� = �

0

�r: (3.35d)

The asymptoti onditions above lead to a rather poor symmetry group, just as

it happened with onditions (3.16) in the three-dimensional ase. If one wants

to reover the isometry group SO(2; 1) at least, one must assume the following

`larger' onditions:

g

tt

= ��

2

r

2

+O(r

0

); (3.36a)

g

tr

= O

�

1

r

3

�

; (3.36b)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.36)

� = O(r): (3.36d)

The asymptoti symmetry group for onditions (3.36) is generated by:

� =

�

"(t) +

1

2�

4

r

2

d

2

"(t)

dt

2

+O

�

1

r

4

��

�

�t

�

�

r

d"(t)

dt

+O

�

1

r

��

�

�r

: (3.37)

Again, to our surprise, the group is in�nite-dimensional and oinides with the

onformal group in one dimension; it ontains SO(2; 1) as subgroup. Fourier

analysis of its generators leads to the following ountable basis:

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

os(n�t) +O

�

1

r

4

��

�

�t

+

�

rn sin(n�t) +O

�

1

r

��

�

�r

;

(3.38a)

B

n

= �B

�n

=

�

1

�

(1�

n

2

2�

2

r

2

�

sin(n�t) +O

�

1

r

4

��

�

�t

�

�

rn os(n�t) +O

�

1

r

��

�

�r

;

(3.38b)
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the ommutation relations are:

[A

n

; A

m

℄ =

1

2

(n�m)B

n+m

+

1

2

(n+m)B

n�m

; (3.39a)

[B

n

; B

m

℄ = �

1

2

(n�m)B

n+m

+

1

2

(n+m)B

n�m

; (3.39b)

[A

n

; B

m

℄ = �

1

2

(n�m)A

n+m

+

1

2

(n+m)A

n�m

; (3.39)

so that the generators form a Virasoro algebra, orresponding to the algebra of

the onformal group in one dimension (apart from the entral harge).

Go on to onsider, as usual, the variation of the bulk Hamiltonian:

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

f�G

ijkl

[N�D

k

h

ij

� �

k

(N�) Æh

ij

℄

+ �

p

h (2h

il

h

jk

� h

ij

h

kl

)Æh

ij

N �

k

�

+ 2�

p

h (�

j

N Æ� �N�

j

Æ�)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

�N

l

P

�

Æ�g;

(3.40)

if the anonial evolution is generated by a vetor �eld like (3.37), the lapse and

shift turn out to be:

N = �r +O

�

1

r

�

; (3.41a)

N

r

= O

�

1

r

�

; (3.41b)

and the asymptotially non-vanishing variational term is:

�

Z

P

p

�

p

h

~n

l

[�

p

h (2h

il

h

jk

� h

ij

h

kl

)Æh

ij

N �

k

�

+ 2�

p

h (�

j

N Æ� �N�

j

Æ�) + 2N

i

ÆP

il

℄;

(3.42)

a problem arises at this point: the variation of the dilaton does not vanish

asymptotially, and in priniple it is not possible to integrate the surfae term

above; only by requiring the dilaton to have the form

� = [1 + Æ�(t)℄O(r); (3.43)

i.e. to be `in�nitesimally near' to unity, an we integrate the variational term

above and �nd the term to be added to the Hamiltonian:

J =

Z

P

p

�

p

h

~n

l

f�

p

h (2h

il

h

jk

� h

ij

h

kl

)(h

ij

� h

�

ij

)N �

k

�

+ 2�

p

h [�

j

N(� � �

�

)N�

j

(� � �

�

)℄

+ 2N

i

(P

il

� P

�

il

)g:

(3.44)
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Calulation of the harges assoiated to the generators (3.38) for a solution

like (3.34) gives:

J[A

n

℄ = H[A

n

℄ =

1

2

�

0

�

2

os(n�t); (3.45a)

J[B

n

℄ = H[B

n

℄ =

1

2

�

0

�

2

sin(n�t); (3.45b)

the only non-trivial onserved harge is the one assoiated to A

0

=

1

�

�

�t

, or-

responding to the mass; besides we obtain an in�nite number of non-onserved

harges. Their presene is related to the integration problems onerning the

variational surfae term, whih we saw above; or it an be related to the fat

that Hamiltonian evolution and Lie transport do not oinide for the generators

of the asymptoti symmetries (whih was true for Brown and Henneaux's ase

instead). Cadoni and Mignemi [20℄ analyse this problem and as a solution they

rede�ne the harge assoiated to the generator � as:

J

0

[�℄

def

=

�

2�

Z

t+

2�

�

t

J[�℄; (3.46)

thus introduing a sort of mean value. By means of this new de�nition we obtain

the onserved harges:

J

0

[A

0

℄ =

M

�

; (3.47a)

J

0

[A

m

℄ = 0 with m 6= 0; (3.47b)

J

0

[B

n

℄ = 0: (3.47)

Now we deform the ground state in�nitesimally by means of the genera-

tor ��

�

:

g

��

= g

�

��

+ L

��

g

�

��

; (3.48)

and we �nd �nd the non-trivial harges assoiated to this deformation:

J

0

[A

n

℄ = �

0

n

3

Æ

jnj jmj

for g

��

= g

�

��

+ L

�B

m

g

�

��

: (3.49)

3.1.4 Asymptoti symmetries in three-dimensional anti-

de Sitter spae with dilaton �eld

The analysis of the asymptoti symmetries of a dilaton gravity theory in

three-dimensional anti-de Sitter spae allows us to make the simplest untrivial

omparison with the respetive non-dilatoni theory. The omparison is not

trivial beause of the spae onsidered, whih is not just at spae, and is

the simplest beause three is the lowest number of dimensions in whih suh

a omparison an me made (in two dimensions there an be no non-dilatoni

gravity theories).
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The (metri) ground state we onsider is the same as the one of non-dilatoni

theory:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d�

2

; (3.50a)

� = �r; (3.50b)

and the blak-hole solutions are:

ds

2

= �

�

�

2

r

2

�

�

2

r

�

dt

2

+

�

�

2

r

2

�

�

2

r

�

�1

dr

2

+ r

2

d�

2

; (3.51a)

� = �r: (3.51b)

If we look for the stritest lass of asymptoti onditions whih ontains

solutions like (3.51) and is invariant under the ation of the ground state's

isometry group SO(2; 2), we �nd:

g

tt

= ��

2

r

2

+O

�

1

r

�

; (3.52a)

g

t�

= O

�

1

r

�

; (3.52b)

g

tr

= O

�

1

r

4

�

; (3.52)

g

��

= r

2

+O

�

1

r

�

; (3.52d)

g

�r

= O

�

1

r

4

�

; (3.52e)

g

rr

=

1

�

2

r

2

+O

�

1

r

5

�

; (3.52f)

and, for the dilaton:

� = O(r): (3.52g)

We immediately see that these onditions are ompletely di�erent from

the (3.23): their gauge parts fall o� faster by one power of 1=r. The asymptoti

symmetries turn out to be di�erent as well:

A

1

=

�

1

�

+O

�

1

r

4

��

�

�t

+

�

O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.53a)

A

2

=

�

O

�

1

r

4

��

�

�t

+

�

1 +O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.53b)

A

3

=

�

�

�

+O

�

1

r

4

��

�

�t

+

�

�t+O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.53)

A

4

=

�

t+O

�

1

r

4

��

�

�t

+

�

�+O

�

1

r

4

��

�

��

�

�

r +O

�

1

r

��

�

�r

; (3.53d)
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A

5

=

�

�t

2

+

�

2

�

+

1

�

3

r

2

+O

�

1

r

4

��

�

�t

+

�

2�t�+O

�

1

r

4

��

�

��

�

�

2�tr +O

�

1

r

��

�

�r

;

(3.53e)

A

6

=

�

2t�+O

�

1

r

4

��

�

�t

+

�

�

2

t

2

+ �

2

�

1

�

2
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+O

�

1

r

4
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�

��

�

�

2�r +O

�

1

r

��

�

�r

;

(3.53f)

these are exatly the generators of the group SO(2; 2); their algebra is indeed

given by the ommutation rules:

[A

1

; A

2

℄ = 0; (3.54a)

[A

1

; A

3

℄ = A

2

; (3.54b)

[A

1

; A

4

℄ = A

1

; (3.54)

[A

1

; A

5

℄ = 2A

4

; (3.54d)

[A

1

; A

6

℄ = 2A

3

; (3.54e)

[A

2

; A

3

℄ = A

1

; (3.54f)

[A

2

; A

4

℄ = A

2

; (3.54g)

[A

2

; A

5

℄ = 2A

3

; (3.54h)

[A

2

; A

6

℄ = 2A

4

; (3.54i)

[A

3

; A

4

℄ = 0; (3.54j)

[A

3

; A

5

℄ = A

6

; (3.54k)

[A

3

; A

6

℄ = A

5

; (3.54l)

[A

4

; A

5

℄ = A

5

; (3.54m)

[A

4

; A

6

℄ = A

6

; (3.54n)

[A

5

; A

6

℄ = 0: (3.54o)

Now let us onsider the Hamiltonian; its variation is:

ÆH
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j
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i

P
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i
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il
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l

P

�

Æ�g;

(3.55)

just as it happened in the two-dimensional ase, we an integrate the variation
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only if the dilaton has the following form:

� = [1 + Æ�(t)℄O(r); (3.56)

with this ondition, the Hamiltonian additional surfae term is:

J =

Z

P

p
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p

h

~n

l

f�G

ijkl
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k

h
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� �

k
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j
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+ 2N
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il
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)g:

(3.57)

.

For a solution like (3.51) the only non-vanishing onserved harge is the

mass, assoiated to the generator �=�t = �A

1

:

J

�

�

�t

�

= H

�

�

�t

�

= 2��

2

=M: (3.58)

The result is not as surprising as in the non-dilatoni ase: the system's

asymptoti boundary is just invariant under SO(2; 2), but not under the on-

formal group; this is due to the asymptoti onditions (3.52), whih are too

strit.

One ould think that assuming the same onditions (3.23) of the non-

dilatoni ase instead of the (3.52) might again result in a larger asymptoti

symmetry group. This idea proves to be wrong as soon as the harges asso-

iated to the present generators (3.53) for a deformed-ground-state solution

are alulated: they diverge; the system thus has in�nite harges. This means

that the present asymptoti onditions (3.52) ontain physially unaeptable

solutions, a fat that will be shown by expliit alulation through Brown and

York's formalism. Hene, if we extended the present asymptoti onditions

to the (3.23) the situation would be only worse. Instead, we must modify

ondition (3.52g) for the dilaton, so that the new asymptoti onditions are:

g

tt

= ��

2

r

2

+O

�

1

r

�

; (3.59a)

g

t�

= O

�

1

r

�

; (3.59b)

g

tr

= O

�

1

r

4

�

; (3.59)

g

��

= r

2

+O

�

1

r

�

; (3.59d)

g

�r

= O

�

1

r

4

�

; (3.59e)

g

rr

=

1

�

2

r

2

+O

�

1

r

5

�

; (3.59f)
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� = �r +O

�

1

r

�

; (3.59g)

as a onsequene of this restrition, the asymptoti symmetry group shrinks to

the subgroup generated by:

A

1

=

�

1

�

+O

�

1

r

4

��

�

�t

+

�

O

�

1

r

4

��

�

��

+

�

O

�

1

r

��
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; (3.60a)

A
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=

�
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+

�

1 +O
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r
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+

�

O
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�

�r

; (3.60b)

A

3

=

�

�

�

+O

�

1

r

4
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�

�t

+

�

�t+O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

: (3.60)

3.2 Quasiloal formalism

We will now apply Brown and York's quasiloal formalism to the alulation

of the harges assoiated to the asymptoti symmetries in anti-de Sitter spae for

the three theories previously analysed, namely the three-dimensional dilatoni

and non-dilatoni theories, and the two-dimensional dilatoni one.

3.2.1 The three-dimensional non-dilatoni ase

Counterterm hoie

Before proeeding to apply the formulas for the quasiloal harges,

Eqs. (2.60) and (2.61), we must hoose an expliit form for the ountert-

erm L

�

, whih is needed for the renormalisation of the harges. In Se. 2.3.1

we outlined the main guide-lines for suh a hoie; we deide to use Balasubra-

manian and Kraus' method in this ase, i.e. to onstrut a ounterterm from

the intrinsi metri objets of the boundary. We make suh a hoie beause

the intrinsi method is omputationally easier and it should be asymptotially

equivalent to the referene-spaetime one (q.v. Lau [33℄).

The form of the ounterterm for three-dimensional anti-de Sitter spae has

been univoally determined by Balasubramanian and Kraus [5℄ by the require-

ment that the quasiloal tensor �

ab

should yield non-diverging harges:

L

�

def

= 2�

Z

B

p

� �: (3.61)

Its variation is:

ÆL

�

= �

Z

B

p

� �

ab

Æ

ab

; (3.62)

whene we obtain the expression for �

�

ab

:

�

�

ab

def

=

ÆL

�

Æ

ab

= ��

ab

; (3.63)
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thus the quasiloal stress-energy tensor is:

�

ab

def

=

2

p

�

ÆL

l

Æ

ab

=

2

p

�

(�

ab

l

��

�

ab

)

= 2�(�

ab

��

ab

� �

ab

):

(3.64)

Charges

We have already analysed the suitable asymptoti onditions, symmetries,

and generators for three-dimensional anti-de Sitter spae in Se. 3.1.2. The

metri indued at in�nity is:

g

tt

= ��

2

r

2

+O(r

0

); (3.65a)

g
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= O(r
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); (3.65b)

g
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= O
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; (3.65)

g
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); (3.65d)

g
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; (3.65e)

g

rr

=
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+O
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; (3.65f)

and it ontains solutions like:

ds

2

= �(�
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+ �
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)dt
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;

(3.66)

whih are onsidered as exitations of the following ground state:
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= ��

2

r

2
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+ (�
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2

+ r

2

d�

2

: (3.67)

The asymptoti symmetry group turns out to be the onformal group in two

dimensions, whih ontains the ground-state isometry subgroup SO(2; 2), and

whose generators are:

� =

�
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1
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;

(3.68a)
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with

�

2

�

�

"(t; �) = �

t

!(t; �); (3.68b)

�

t

"(t; �) = �

�

!(t; �) = ��(t; �); (3.68)

�"(t; �) = �

1

2�

2

�

t

�(t; �); (3.68d)

�!(t; �) =

1

2

�

�

�(t; �): (3.68e)

These generators an be Fourier analysed, and we have the ountable basis:
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(3.69b)
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(3.69)
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�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�

sin(n�t) os(n�) +O

�

1

r

4

��

�

��

+

�

rn sin(n�t) sin(n�) +O

�

1

r

��

�

�r

:

(3.69d)

Sine these generators satisfy the ommutation relations (3.26) (p. 56), they

span a diret sum of two opies of a Virasoro algebra.

Aording to what we said in Se. 2.3.3, if the quasiloal is to be used

properly, then the generators � must satisfy the ondition

L

�

k



ab

��

(a

�

k

b)

r!1

���! 0; (3.70a)
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i.e.

�

a

�

ka

r!1

���! 0; (3.70b)

or the ondition

�

ab

�

(a

�

k

b)

r!1

���! 0: (3.71)

Indeed, for a generator like (3.68) we have:

�

ab

�

(a

�

k

b)

= O

�

1

r

4

�

; (3.72)

whih is satisfatory.

Expliit alulation of the harges for a solution like (3.66) gives

Q(A

0

)

def

=

Z

P

p

�A

0

ka

~u

b

�

b

a

= �; (3.73a)

Q(B

0

)

def

=

Z

P

p

�B

0

ka

~u

b

�

b

a

= �A (3.73b)

as the only non-vanishing harges, i.e. we �nd mass and angular momentum just

like we expeted. If we alulate the harges for an in�nitesimal deformation of

the ground state we �nd the untrivial results:

Q(A

n

) =

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�C

m

g

�

��

; (3.74a)

Q(B

n

) = �

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�D

m

g

�

��

; (3.74b)

i.e. the entral harges found in Se. 3.1.2 by Regge and Teitelboim's proedure.

3.2.2 The three-dimensional dilatoni ase

Three-dimensional anti-de Sitter spae with a dilaton �eld is the �rst arena

wherein we fae the problems disussed in Se. 2.3.2.

Counterterm

Even in this ase we deide to onstrut the ounterterm L

�

from B's intrinsi

metri objets. The presene of the dilaton as one of these intrinsi objets,

though, allows us to onstrut an almost in�nite variety of ounterterms; and

there is not only one expression among them whih is univoally determined by

requiring �nite harges. We deide to onsider the ounterterm whose form is

the simplest:

L

�

def

= 4�

Z

B

p

� ��; (3.75)
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it di�ers from the orresponding non-dilatoni one (3.61) by a fator 2 and by

the presene of the dilaton. Its variation is:

ÆL

�

=

Z

B

p

� (2���

ab

Æ

ab

+ 4��Æ�); (3.76)

whene we have:

�

�

ab

def

=

ÆL

�

Æ

ab

= 2��

ab

; (3.77a)

�

�

�

def

=

ÆL

�

Æ�

= 4��; (3.77b)

so that the quasiloal stress-energy tensor is:

�

ab

= 2(�

l

ab

��

�

ab

)

= 2�[�(�

ab

��

ab

) + n

�

r

�

� � 2��

ab

℄:

(3.78a)

The formula for the harge is, as from Se. 2.3.2,

Q

P

t

(�)

def

=

Z

P

t

p

� �

ka

~u

b

�

ab

: (3.78b)

Charges

As in Se. 3.1.4, the ground state is:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d�

2

; (3.79a)

� = �r; (3.79b)

and the exited states are:

ds

2

= �

�

�

2

r

2

�

�

2

r

�

dt

2

+

�

�

2

r

2

�

�

2

r

�

�1

dr

2

+ r

2

d�

2

; (3.80a)

� = �r; (3.80b)

these are ontained in the following asymptoti onditions:

g

tt

= ��

2

r

2

+O

�

1

r

�

; (3.81a)

g

t�

= O

�

1

r

�

; (3.81b)

g

tr

= O

�

1

r

4

�

; (3.81)

g

��

= r

2

+O

�

1

r

�

; (3.81d)

g

�r

= O

�

1

r

4

�

; (3.81e)
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g

rr

=

1

�

2

r

2

+O

�

1

r

5

�

; (3.81f)

� = O(r); (3.81g)

whose asymptoti symmetry group is just SO(2; 2), generated by:

A

1

=

�

1

�

+O

�

1

r

4

��

�

�t

+

�

O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.82a)

A

2

=

�

O

�

1

r

4

��

�

�t

+

�

1 +O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.82b)

A

3

=

�

�

�

+O

�

1

r

4

��

�

�t

+

�

�t+O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.82)

A

4

=

�

t+O

�

1

r

4

��

�

�t

+

�

�+O

�

1

r

4

��

�

��

�

�

r +O

�

1

r

��

�

�r

; (3.82d)

A

5

=

�

�t

2

+

�

2

�

+

1

�

3

r

2

+O

�

1

r

4

��

�

�t

+

�

2�t�+O

�

1

r

4

��

�

��

�

�

2�tr +O

�

1

r

��

�

�r

;

(3.82e)

A

6

=

�

2t�+O

�

1

r

4

��

�

�t

+

�

�

2

t

2

+ �

2

�

1

�

2

r

2

+O

�

1

r

4

��

�

��

�

�

2�r +O

�

1

r

��

�

�r

;

(3.82f)

whih satisfy the ommutation rules (3.54) (p. 62).

In Se. 3.1.4 we also stated that the asymptoti onditions and symmetries

above yield diverging harges; now that statement will be demonstrated. Let

us express the (3.81) as:

g

tt

= ��

2

r

2

+

'

tt

�r

+O

�

1

r

2

�

; (3.83a)

g

t�

=

'

t�

�r

+O

�

1

r

2

�

; (3.83b)

g

tr

=

'

tr

�

4

r

4

+O

�

1

r

5

�

; (3.83)

g

��

= r

2

+

'

��

�r

+O

�

1

r

2

�

; (3.83d)

g

�r

=

'

�r

�

4

r

4

+O

�

1

r

5

�

; (3.83e)

g

rr

=

1

�

2

r

2

+

'

rr

�

5

r

5

+O

�

1

r

6

�

; (3.83f)

� = �r + '

�

1

�r +

'

�

2

�r

+O

�

1

r

2

�

; (3.83g)
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where the improper gauge part is now visible; using the expressions above into

Eqs. (3.78) to alulate the harge assoiated to the generator �=�t, we obtain:

Q

P

t

�

�

�t

�

= 4��r

Z

2�

0

'

�

2

(t; �) d� +O(r

0

): (3.84)

It is now evident that the harge diverges as r ! 1, and that this is due to

the asymptoti ondition � = O(r). The divergene remains hidden when we

alulate the harge for a blak-hole solution (3.80), beause '

�

2

(t; �) = 0 for

suh a solution. In order to have �nite harges we must require the dilaton to

behave as

� = �r + '

�

1

�r +O

�

1

r

2

�

; (3.85)

this requirement redues the asymptoti symmetry group to that spanned

by fA

1

; A

2

; A

3

g: this is just the `symmetry breaking' phenomenon we have

already spoken about. While in two dimensions this phenomenon leads to

non-onserved harges (as we saw by Regge and Teitelboim's formalism and

as we shall see by the quasiloal formalism), so that one an keep the larger

symmetry group, in three dimensions the phenomenon leads to diverging

harges instead, so that one must redue the group.

3.2.3 The two-dimensional dilatoni ase

The alulation of the harges through Brown and York's method, in the

two-dimensional ase, is the easiest omputationally yet the subtlest and the

most ambiguous at the same time.

The ounterterm question

By detailed examination of harge alulation in two-dimensional dilatoni

anti-de Sitter spae, all oneptual problems onerning the ounterterm are

brought to light. We shall alulate the harges both through an intrinsi oun-

terterm and through a bakground ounterterm. We shall see that a ounterterm

�a la Balasubramanian and Kraus annot be univoally determined by simply

demanding renormalised harges. We shall also see that Brown and York's

formula for the harges is not equivalent to the Regge-Teitelboim one.

Intrinsi ounterterm

We use an intrinsi ounterterm whih is the sum of two piees:

1. the �rst is the analogue of the one used in the three-dimensional dilatoni

ase:

L

�

1

def

= 2C

1

�

Z

B

p

� ��; (3.86)
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2. for the seond, we draw inspiration from the dilaton kineti term in the

Brans-Dike Lagrangian:

L

�

2

def

= C

2

�

Z

B

p

�

1

��

(��)

2

; (3.87)

so the total intrinsi ounterterm is:

L

�

def

= �

Z

B

p

�

�

2C

1

�� + C

2

1

��

(��)

2

�

= L

�

1

+ L

�

2

: (3.88)

We shall see that the �rst addendum takes part in harge renormalisation, while

the other appears in the �nite part of the harges. The onstants C

1

and C

2

are undetermined by now; aording to Balasubramanian and Kraus we should

be able to �x them by requiring renormalised harges; we shall see that this is

not the ase.

The variation of the ounterterm is:

ÆL

�

= �

Z

B

p

�

��

C

1

��

ab

+ C

2

1

2��

(

ab



d

� 2

a



bd

)�



��

d

�

�

Æ

ab

+

�

2C

1

�� C

2

1

��

2



d

�



��

d

�

� 2C

2

�



�

p

�

1

��



d

�

d

�

��

Æ�

�

;

(3.89)

and we �nd the expression for the quasiloal stress-energy tensor through

Eq. (2.66):

�

ab

= 2�[�(�

ab

��

ab

) + n

�

r

�

� � C

1

��

ab

� C

2

1

2��

(

ab



d

� 2

a



bd

)�



��

d

�℄:

(3.90)

The harge assoiated to the generator � is, as usual,

Q

P

(�)

def

=

Z

P

t

p

� �

ka

~u

b

�

ab

: (3.91)

Charges We already saw in Se. 3.1.3 that the asymptoti onditions for two-

dimensional anti-de Sitter spae are:

g

tt

= ��

2

r

2

+O(r

0

); (3.92a)

g

tr

= O

�

1

r

3

�

; (3.92b)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.92)

� = O(r); (3.92d)
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these are invariant under the onformal group in one dimension, whose genera-

tors are given by:

� =

�

"(t) +

1

2�

4

r

2

d

2

"(t)

dt

2

+O

�

1

r

4

��

�

�t

+

�

r"(t) +O

�

1

r

��

�

�r

; (3.93)

or, by means of a ountable basis,

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

os(n�t) +O

�

1

r

4

��

�

�t

+

�

rn sin(n�t) +O

�

1

r

��

�

�r

;

(3.94a)

B

n

= �B

�n

=

�

1

�

(1�

n

2

2�

2

r

2

�

sin(n�t) +O

�

1

r

4

��

�

�t

+

�

rn os(n�t) +O

�

1

r

��

�

�r

:

(3.94b)

The generators form a Virasoro algebra and satisfy the ommutation rela-

tions (3.39) (p. 59).

In order to analyse in detail the alulations to follow, we write the asymp-

toti onditions (3.92) as:

g

tt

= ��

2

r

2

+ '

tt

+O

�

1

r

�

; (3.95a)

g

tr

=

'

tr

�

3

r

3

+O

�

1

r

4

�

; (3.95b)

g

rr

=

1

�

2

r

2

+

'

rr

�

4

r

4

+O

�

1

r

5

�

; (3.95)

� = �r� +

'

��

�r

+O

�

1

r

2

�

; (3.95d)

where the O(1=r

n

) terms are just the proper gauge parts. In the notation above,

the ground state orresponds to

'

tt

= '

tr

= '

rr

= '

��

= 0; (3.96a)

� = 1; (3.96b)

while the onditions

'

tt

= '

rr

=

2M

�

; (3.97a)

'

tr

= '

��

= 0; (3.97b)

� = 1 (3.97)

orrespond to a blak hole having mass M .
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Firstly, we want to examine the asymptoti behaviour of the term

p

� �

ka

~u

b

� �

kt

~u

t

(3.98)

whih multiplies the quasiloal tensor in Eq. (3.91). We �nd:

�

kt

~u

t

� �

�



�

t

~u

t

=

"

�r

+O

�

1

r

3

�

; (3.99)

it is lear that, if we want non-diverging, yet non-vanishing harges, the quasilo-

al tensor must behave exatly as O(r); the analysis of his asymptoti behaviour

gives:

�

tt

= 2�[(C

1

� 1)�

4

�℄ � r

3

+ �

�

�'

rr

� 2(C

1

� 1)�'

tt

+ 2(C

1

+ 1)'

��

+ C

2

_�

2

�

2

�

�

� r;

(3.100)

in this expression we have a term whih behaves as O(r), whih is just what we

wanted, but also a term

2�(C

1

� 1)�

4

�r

3

� O(r

3

) (3.101)

whih yields a divergene. We get rid of it by �xing the onstant C

1

to the

suitable value

C

1

= 1: (3.102)

We have thus �xed one of the ounterterm's onstants; the expression for the

quasiloal tensor beomes:

�

tt

= �

�

�'

rr

+ 4'

��

+ C

2

_�

2

�

2

�

�

r; (3.103)

Now, multiplying Eq. (3.99) by Eq. (3.100) with C

1

= 1, we �nd the expres-

sion for the harge (integration over P orresponds to evaluation at P , sine P

is just a point in this ase):

Q(�) = ��"

�

�'

rr

+ 4'

��

+ C

2

_�

2

�

2

�

�

:

(3.104)

Calulation of the harge assoiated to the Killing vetor �eld �=�t (Eq. (3.93)

with "(t) � 1) for a blak-hole solution with mass M (Eqs. (3.97)), yields:

Q

�

�

�t

�

= 2� �M (3.105)

(sine � =

1

2

for the two-dimensional Lagrangian, q.v. Se. 1.3.2).

Thus Eq. (3.104) gives the right value for the blak-hole mass, independently

of the value of the onstant C

2

. Note that we do not have other reasonable
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requirements to impose on the expression of the harge, and so the onstant C

2

remains hopelessly undetermined; Balasubramanian and Kraus' presription is

ambiguous in this ase.

We want to hek the values of the entral harges. Let us take the in�nites-

imal generator:

�� =

�

�!(t) +

1

2�

4

r

2

��!(t) +O

�

1

r

4

��

�

�t

+

�

r� _!(t) +O

�

1

r

��

�

�r

; (3.106)

and deform the ground state by: g

�

��

+ L

��

g

�

��

and � + L

��

�; we �nd that this

in�nitesimally deformed state is given by Eqs. (3.95) with:

'

tt

= �

�

...

!

�

2

; (3.107a)

'

tr

= '

rr

= '

��

= 0; (3.107b)

� = 1� � _!: (3.107)

Substitution in Eq. (3.104) of the Equations above gives the entral harge

assoiated to the generator �; at �rst order in �:

Q(�) = 0 +O(�

2

): (3.108)

This result is quite disturbing: we do not �nd Cadoni and Mignemi's result,

Eq. (3.45). A disussion about this inongruene is deferred to the next setion

and to the last hapter.

Bakground ounterterm

The main diÆulty in alulating a bakground ounterterm onsists in em-

bedding isometrially and, in this ase, isodilatonially the hypersurfae B in

the referene spaetime.

In the present ase the hypersurfae B is a unidimensional manifold (i.e. a

line) given by the equation r = onst., and its intrinsi metri and dilaton are

given by:



tt

= ��

2

r

2

+ '

tt

(t) +O

�

1

r

�

; (3.109a)

�j

B

= �r�+

'

��

�r

+O

�

1

r

2

�

; (3.109b)

the bakground spaetime is de�ned by:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

; (3.110a)

� = �r; (3.110b)

and in this oordinate system the metri and the dilaton indued on the bound-

ary r = onst. are:



tt

= ��

2

r

2

; (3.111a)

�j

B

= �r; (3.111b)
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so they do not oinide with Eqs. (3.109). We must �nd | if it is possible

| a new oordinate system for the referene spaetime so that the boundary

metri and dilaton oinide, asymptotially at least, with the ones given by

Eqs. (3.109).

Suh a oordinate system exists, and is obtained through the transformation:

t 7�! �(t) +

�(t)

�

2

r

2

; (3.112a)

r 7�! r�(t) +

'

��

(t)

�

2

r

; (3.112b)

where the funtions �(t) and �(t) are de�ned by:

� = &

Z

dt �

�1

; (3.112)

� = &

Z

dt

�

_�

2

2�

2

�

3

�

'

tt

2�

�

'

��

�

2

�

; (3.112d)

with & = �1.

The line element and the dilaton (3.110) assume thus the new forms:

ds

2

=
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�
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2

;

(3.113a)

� = �r�+

'

��

�r

; (3.113b)

where

�'

rr

def

= �4�

2

�

2

�

2

� 4

'

��

�

; (3.113)

�'

tr

def

= 2&��� +

_�

��

; (3.113d)

in this new oordinate system, the metri and dilaton indued on the hypersur-

fae r = onst. have expressions whih asymptotially oinide with Eqs. (3.109)

(to be preise, their di�erenes a�et the proper gauge parts only):



tt

= ��

2

r

2

+ '

tt

(t) +O

�

1

r

2

�

; (3.114a)

�j

B

= �r�+

'

��

�r

: (3.114b)

From the de�nition

L

�

def

=

Z

B

(

~

NE

�

�

~

N

A

J

�

A

); (3.115)
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we obtain, through simple alulations:

�

�

tt

= �

�

��

4

r

3

�+ �

2

r

�

�'

tt

� '

��

�

_�

2

2�

2

�

��

+O(r

0

); (3.116)

hene the full quasiloal tensor is given by:

�

tt

= �

�

�'

rr

+ 4'

��

+

_�

2

�

2

�

�

r: (3.117)

Charges Comparison with the quasiloal tensor onstruted with the intrin-

si ounterterm shows that the latter oinides with the present, bakground

one when C

2

= 1. Sine the onstant C

2

did not appear in the main results

onerning the harges that we obtained through the use of the intrinsi oun-

terterm, we an onlude that an analysis of the harges through the present

ounterterm would just lead to the same results. So we annot �nd Cadoni and

Mignemi's result for the entral harge in this ase either. The only explana-

tion for this inongruene is that Brown and York's approah to harge analysis

is not equivalent to Regge and Teitelboim's. In partiular, the surfae terms

assoiated with these two approahes, Eqs. (2.35) and (2.36), are not equivalent.

3.3 Central harges and statistial entropy

3.3.1 Central harge

The fat that a non-dilatoni gravity theory in three-dimensional anti-de Sit-

ter spae possesses an in�nite-dimensional (asymptoti) symmetry group with

assoiated harges holds many interesting onsequenes for the statistial ther-

modynamis of the theory.

The algebra of the asymptoti symmetry anonial generators usually yields

a representation of the Lie algebra of the orresponding vetor �elds. This

representation is, in general, a projetive one:

fH[�℄;H[�℄g = H[ [�; �℄ ℄ +K[�; �℄; (3.118)

in many ases, however, one has K[�; �℄ = 0 and Eq. (3.118) is just an isomor-

phism:

fH[�℄;H[�℄g = H[ [�; �℄ ℄: (3.119)

The funtional K[�; �℄ is alled `entral harge'.

Eq. (3.119) does hold in the ase of anonial gravity theory in at spae,

but does not in the ase of anti-de Sitter spae, for whih we need the more

general projetive representation. The alulation of the expliit value of the

entral harge has been studied by Brown and Henneaux [14℄.

Starting from Eq. (3.118) one �rst notes that, for solutions of the equations

of motion, it beomes:

fJ[�℄; J[�℄g = J[ [�; �℄ ℄ +K[�; �℄; (3.120)
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moreover, the Dira braket of two anonial generators fJ[�℄; J[�℄g is given by

the variation of the harge assoiated to the generator � on the surfae deformed

by �:

fJ[�℄; J[�℄g � Æ

�

J[�℄; (3.121)

hene Eq. (3.120) an be rewritten as:

Æ

�

J[�℄ = J[ [�; �℄ ℄ +K[�; �℄; (3.122)

and when evaluated on the ground state, for whih J[�℄ = 0, it redues to:

Æ

�

J[�℄ = K[�; �℄: (3.123)

Therefore we have that the harges evaluated in the preeding setions are just

the entral harges of the projetive representation of the asymptoti symmetry

generators' algebra. We have seen that in the ase of three-dimensional anti-

de Sitter spae without dilaton and two-dimensional anti-de Sitter spae with

dilaton these algebras are in�nite-dimensional.

The three-dimensional ase

Using a new basis for the algebra of generators fA

n

; B

n

; C

n

; D

n

g (Eq. (3.25)):

L

n

def

=

i�

2

A

n

+

i�

2

B

n

�

1

2

C

n

+

1

2

D

n

�

1

�

; (3.124a)

K

n

def

=

i�

2

A

n

�

i�

2

B

n

�

1

2

C

n

�

1

2

D

n

�

1

�

; (3.124b)

we obtain the following ommutation rules for the orresponding anonial gen-

erators:

fJ[L

n

℄; J[L

m

℄g = (n�m)J[L

(n+m)

℄ +



12

(n

3

� n)Æ

n;�m

; (3.125a)

fJ[K

n

℄; J[K

m

℄g = (n�m)J[K

(n+m)

℄ +



12

(n

3

� n)Æ

n;�m

; (3.125b)

fJ[L

n

℄; J[K

m

℄g = 0; (3.125)

with  �

3

2�

. The fundamental result is that the algebra of the anonial asymp-

toti symmetry generators in three-dimensional anti-de Sitter spae is a diret

sum of two Virasoro algebras with entral harge  �

3

2�

. This algebra har-

aterizes a onformal �eld theory in two dimensions, hene gravity theory in

three-dimensional anti-de Sitter spae is dual to a onformal �eld theory in two

dimensions with entral harge  �

3

2�

.

The two-dimensional ase

The asymptoti symmetry group in two-dimensional anti-de Sitter spae,

instead, is generated by fA

n

; B

n

g, Eq. (3.38), and, by a hange of basis:

L

n

def

= iA

n

�B

n

� 1; (3.126)
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we have the following expressions for the ommutation rules of the orresponding

anonial generators:

fJ[L

n

℄; J[L

m

℄g = (n�m)J[L

(n+m)

℄ +



12

(n

3

� n)Æ

n;�m

; (3.127)

with  � 24, as alulated by Cadoni and Mignemi [19℄. Hene the algebra of

the anonial asymptoti symmetry generators in two-dimensional anti-de Sit-

ter spae is a Virasoro algebra with entral harge  � 24. This algebra har-

aterizes a onformal �eld theory in one dimension, so that gravity theory in

two-dimensional anti-de Sitter spae is dual to a onformal �eld theory in one

dimension with entral harge  � 24.

2

3.3.2 Statistial entropy

The onlusions in the preeding setion imply that a blak-hole solution in

three- or two-dimensional anti-de Sitter spae (without dilaton and with dila-

ton, respetively) an be onsidered as a state (an exited one) of a onformal

dual theory. From this point of view, the entropy of a blak hole having massM

(and angular momentum J in three dimensions) an be statistially evaluated

by ounting the orresponding mirostates. As it has been shown by Stro-

minger [42℄, when the number of the states tends to in�nity the entropy in a

onformal �eld theory is given by Cardy's formula [22℄

S = 2�

r

 l

L

0

6

+ 2�

r

 l

K

0

6

(3.128)

in two dimensions, or

S = 2�

r

 l

L

0

6

(3.129)

in one dimension, where l

L

0

(l

K

0

) is the eigenvalue of the generator L

0

(K

0

), and

the formula holds for high values of mass and angular momentum.

In the three-dimensional ase we have:

S = �

r

M

2�

2

+

J

2�

+ �

r

M

2�

2

�

J

2�

; (3.130)

and in the two-dimensional ase:

S = 4�

r

M

�

: (3.131)

The �rst value agrees with the thermodynami one, as found by Bekenstein and

Hawking, and this agreement supports the interpretation of three-dimensional

gravity theory as a two-dimensional onformal �eld theory. The seond value,

2

Note added in translation: See Note 3
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instead, does not agree with the thermodynami one by a fator

p

2. A possible

explanation for this disrepany may ome from the fat that we onsidered only

one of the two disonneted piees of the two-dimensional anti-de Sitter spae's

boundary | we were fored to do that by the dilaton's presene. Another

possible explanation is that Hamiltonian and Lie evolution do not oinide in

the two-dimensional theory, as it happens in the three-dimensional one instead.

3

3

Note added in translation: Cadoni, Carta, Klemm, and Mignemi [AdS

2

Gravity as a

Conformally Invariant Mehanial System, preprint hep-th/0009185 (2000)℄ have reently

shown that two-dimensional anti-de Sitter spae is really dual to a onformally invariant

theory that an be desribed in terms of a de Alfaro-Fubini-Furlan model oupled to an

external soure with onformal dimension two, or equivalently in terms of a mehanial system

with anholonomi onstraints. They have found perfet agreement between statistial and

thermodynami entropy; the disrepany above vanishes thanks to an entropy ontribution

whih desribes the entanglement of states.
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Chapter 4

Final remarks and

onlusions

The main results of the present work an be grouped as follows:

1. derivation and disussion of the asymptoti symmetries of three-

dimensional anti-de Sitter spae for a Jakiw-Teitelboim dilaton gravity

theory;

2. appliation of Brown and York's quasiloal formalism to the alulation

of the harges assoiated to asymptoti symmetries in two and three di-

mensions;

3. omparative disussion, in the ontext of the asymptoti symmetries, of

the Hamiltonian surfae terms whih have reently appeared in the liter-

ature.

4.1 Asymptoti symmetries in three-dimensional

anti-de Sitter spae

Jakiw-Teitelboim dilaton gravity theory in three-dimensional anti-de Sitter

spae has proved to be very di�erent from the non-dilatoni one in the ontext

of the asymptoti symmetries. The presene of a dilaton �eld has three main

onsequenes.

Firstly, it introdues a dynamial degree of freedom into the theory, that

would have none otherwise.

Seondly, the Jakiw-Teitelboim blak-hole solution is very di�erent from

the Ba~nados-Teitelboim-Zanelli one: the seond is topologial beause the salar

urvature is everywhere onstant (q.v. Se. 1.3.2), whereas the �rst is not be-

ause the urvature is not onstant; hene the seond has got a simple ausal

singularity, whereas the �rst has got a polynomial one. These topologial and
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ausal di�erenes manifest themselves as di�erent asymptoti onditions of the

two metris: the proper gauge parts in the dilaton theory fall o� faster than

in the non-dilatoni theory by one power of 1=r; as a onsequene, the asymp-

toti group is smaller and �nite-dimensional: it is just the Speial Orthogonal

group SO(2; 2). All this yields the onjeture that the possibility of an in�nite-

dimensional extension of the symmetries should depend upon one, or the union

of some, of the following three points: the absene of dynamial degrees of

freedom; the presene of topologial solutions; the absene of polynomial singu-

larities.

Thirdly, the asymptoti ondition for the dilaton yields diverging harges,

so that it must be modi�ed and this leads to the breaking of the symmetries

and to further redution of the SO(2; 2) group.

Symmetry breaking and dilaton

We saw that the symmetry breaking phenomenon due to the presene of a

(non-onstant) dilaton �eld appears in the two-dimensional ase as well. This

fat shows up learly in the expression for the harge assoiated to the genera-

tor �

�

for a Jakiw-Teitelboim-like theory,

�[Q

P

t

00

(�)�Q

P

t

0

(�)℄ = (4.1)

Z

t

00

t

0

p

� [(�

�

l

��

�

�

)�

a

�

a

� � �

a



a�

n

�

T

��

℄; (4.2)

and in the equation for the quasiloal tensor,

�

b

�

ab

= (�

�

l

��

�

�

)�

b

�

ab

� 

b

�

n

�

T

��

; (4.3)

where soure terms appear whose origin is manifestly dilatoni; these additional

soure terms fore the imposition of additional onstraints on the symmetry

generators, that are redued in number this way. If one disregards these addi-

tional onstraints, the dilatoni soure terms lead to non-onserved harges (as

is the ase for two-dimensional anti-de Sitter spae) or, worst, diverging harges

(as is the ase for three-dimensional anti-de Sitter spae); in the latter ase one

annot atually disregard the additional onstraints, and the breaking of the

symmetries is inesapable.

4.2 Quasiloal formalism and asymptoti sym-

metries

Applying Brown and York's formalism to the alulation of the asymptoti-

symmetry-assoiated harges, we have obtained results whih do not agree with

those alulated by Regge and Teitelboim's presription in the two-dimensional

ase (Se. 3.1.3 and Se. 3.2.3): whereas the Regge-Teitelboim proedure yields

non-vanishing (non-onserved) entral harges, the quasiloal formalism yields

vanishing harges. There are two possible explanations for this disrepany.
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The �rst is that the Regge-Teitelboim Hamiltonian surfae term,
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def
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j
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j
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i

P
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l

P
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i
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il

�N

l

P

�

Æ�g';

(4.4)

with �

�

= Nu

�

+ N

�

, is not equivalent to Brown and York's formula for the

harge, whih is just Creighton and Mann's Hamiltonian surfae term:

Q(�)

def

=

Z

P

p

� �

a

~u

b

�

ab

� Q(�) �

Z

P

(

~

NE �

~

N

A

J

A

); (4.5a)

with

E = 2

p

� ~u

a

~u

b

�

ab

= 2

p

�

�

�n

�

r

�

� + �k

�

�E

�

; (4.5b)

J

A

= 2

p

� �

Aa

~u

b

�

ab

= 2

p

� �

Ai

n

j

P

ij

� J

�

A

; (4.5)

and �

a

=

~

N ~u

a

+

~

N

a

. These two surfae terms may ome from Lagrangians with

di�erent boundary onditions, i.e. di�erent boundary terms.

1

The seond explanation is that the proedure, used in the present work, of

substituting the generator � with its projetion onto the boundary, �

ka

� 

a

�

�

�

,

in the formula for the harge is inonsistent. It is very likely for this explanation

to be right: it is obvious that a projetion implies some loss of information; but

we should like to stress the fat that we have been fored to use suh a proedure,

due to a lak of generality in Brown and York's formalism and in Creighton and

Mann's surfae term.

The problem is that formula (4.5) requires the generator �

�

to lie on the

boundary B, as is shown by the expression �

a

=

~

N ~u

a

+

~

N

a

(from the point of

view of the quasiloal approah, this derives from the requirement that �

�

be

a isometry of the boundary; from the point of view of Creighton and Mann's

approah, this derives from the requirement that �

�

make the boundary evolve

tangentially to itself). But an asymptoti symmetry generator is not, in general,

tangential to the boundary; hene the need for its projetion.

An alternative solution to this problem ould be the hoie of a suitable

boundary that should ontain the orbits of the generator; however, this solution

would have two drawbaks.

1

Note added in translation: Reent alulations seem to show that the Creighton-Mann

Hamiltonian surfae term should orrespond to the Regge-Teitelboim one with an additional

term proportional to the trae of the extrinsi urvature of B,

R

P

p

h

~

Nf�.
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The �rst drawbak is that one should give up a ertain omputational faility,

sine a boundary of the form x

�

= onst. would not be suitable in general;

moreover one should hoose a di�erent boundary for every di�erent generator.

The seond drawbak is muh more fundamental: it is not possible to �nd

suh a boundary| whih has to be timelike | for all kinds of generators. An ex-

ample may help in larifying this point. Consider three-dimensional Minkowski

spae M

3

with a ylindrial oordinate system (t; r; �), and onsider the follow-

ing symmetry generators: �=�t, �=��, 2 �=�t + �=�r, and �=�r. In order to

alulate the harges assoiated with the �rst two generators, one an use the

boundary de�ned by r = onst., whih ontains the orbits of both; in order to

alulate the harge assoiated with the third, the boundary above is no more

suitable for it does not ontain the orbits, and one must resort to a boundary

de�ned by t � 2r = onst. (slightly less easy omputationally). But, for the

fourth generator, �=�r, no timelike boundary at all

2

exists that an ontain its

orbits. Thus Brown and York, and Creighton and Mann's methods are limited

to ertain kinds of generators only.

Another diÆulty is losely related to the point disussed above, and on-

erns the relationship between boundary- and bulk-symmetries in the limit

where the boundary is pushed to in�nity. An example may help in explaining

this point as well. Consider the manifold given by an in�nitely high ylindrial

portion of the above-onsidered Minkowski spae, delimited by the bases t =

�1, t = +1, and by the lateral surfae r = onst. This manifold is loally

invariant under the full three-dimensional Poinar�e group, yet this group is not

admitted as a group of global symmetries, for evident reasons (e.g. a spatial

translation would not map the manifold into itself); indeed the only global

symmetries are spatial rotations and temporal translations, generated by �=��

and �=�t respetively. The boundary does naturally reet the group of the

manifold's global symmetries, i.e. it is invariant under rotations and tempo-

ral translations. But, as soon as the lateral boundary is pushed to in�nity, the

manifold (the bulk) suddenly aquires the full Poinar�e group as group of global

symmetries | just beause it has beome Minkowski spae M

3

|, whereas the

boundary, that in the limit proess has just two symmetries for every �nite value

of r, eventually still possesses just those two initial symmetries. This way we are

faing the paradox of a surfae that does not possess all the symmetries of the

bulk. The paradox learly arises in the limit proess: onsidering a boundary at

�nite and then push it to in�nity is not the same as having a boundary `already'

at in�nity.

This question is very important in the ontext of the asymptoti symme-

tries, where the fundamental priniple is the fat that the asymptoti boundary

possesses all the bulk symmetries (and more).

Thus the quasiloal formalism is not ompletely suitable for dealing with the

asymptoti symmetries and harges, for it should be applied in two suessive

steps: (1) study the boundary's symmetries at �nite, then (2) push the boundary

to in�nity and alulate the harges there; but we have just seen that we annot

2

Whih satis�es some basi requirements, like e.g. having an inside and an outside.
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�nd all asymptoti symmetries this way. This also relates to what we said in

Se. 2.1.1 about de�ning the metri indued at in�nity by limit or by series

expansion.

4.3 Di�erent Hamiltonian surfae terms

In the present work we have used two Hamiltonian surfae terms reently

presented in the literature, Eqs. (4.4) and (4.5), to operate with asymptoti

symmetries. The onlusions about the (inadequay of) the latter have already

been drawn in the previous setion.

The Regge-Teitelboim surfae term does not su�er the limitations of the

Creighton-Mann one; this is shown by the equation �

�

= Nu

�

+N

�

, whih does

not require the generator � to be tangent to any boundary. This freedom allows

omputational easiness and appliability to all kinds of generators. The only

drawbak of the Regge-Teitelboim proedure is the fat that it is not always

possible to integrate the variation so as to obtain a �nite expression for the

surfae term, as we saw e.g. during the alulations for the two- and three-

dimensional dilatoni ases.

A Hamiltonian surfae term reently proposed by Hawking and Hunter,

Eq. (1.27), seems not to su�er from the latter drawbak, while retaining the

exibility of the Regge-Teitelboim term. Its form has only been given for non-

dilatoni gravity theories at the moment, though.

3

Anyway, one should note that all Hamiltonian surfae terms do in priniple

share a ommon drawbak, namely the fat that they are `Hamiltonian'; by

this we mean the following fat. Using a Hamiltonian surfae term to alulate

a harge means that we are anonially evolving the initial hypersurfae S

0

,

whih satis�es ertain (�xed) asymptoti onditions. But anonial evolution

does not guarantee that the initial asymptoti onditions will be satis�ed by

the suessive hypersurfaes, for the asymptoti onditions where studied by

means of Lie transport, whih di�ers in general from Hamiltonian transport.

Thus we have this viious irle: from ertain asymptoti onditions we �nd

asymptoti symmetries whose generators does not preserve those onditions

(under Hamiltonian transport). This is a typially Hamiltonian problem.

Counterterms

The alulation of the harges by means of the quasiloal formalism has

allowed us to analyse two di�erent kinds of ounterterm used in the literature:

the bakground-spae ounterterm and the intrinsi ounterterm.

The �rst does not yields anomalous results at �nite (q.v. Se. 2.3.1), but

annot be omputed, in priniple, in all ases.

The seond does yield anomalous results at �nite instead, and in the ase of

a dilaton gravity theory it annot be univoally determined by renormalisation

onditions (q.v. Se. 3.2.3 and the indetermination of the onstant C

2

).

3

Note added in translation: See Chap. 1., Note 1.
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A sort of onlusion

Whene, exeptionally, one draws nothing

[In the original, Italian version of the present thesis, this setion is an exerpt

from Robert Musil's Der Mann ohne Eigenshaften, Part II, 72., as translated

into Italian by Anita Rho [48℄. It has not been translated in the present English

version in aount of the translator's inompetene.℄
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